
Universidade FUMEC
Faculdade de Ciências Empresariais

Programa de Pós-Graduação em Sistemas de Informação e Gestão do
Conhecimento

Identifying Code Smells with Machine Learning
Techniques

Frederico Caram Luiz

Belo Horizonte
2018

Frederico Caram Luiz

Identifying Code Smells with Machine Learning
Techniques

MSc thesis presented to the Programa de
Pós-Graduação em Sistemas de Informação e
Gestão do Conhecimento of FUMEC Univer-
sity, as partial fulfillment of the requirements
for the Master’s degree in Information Sys-
tems and Knowledge Management. Research
track: Technology and Information Systems.

Supervisor: Prof. Dr. Fernando Silva Par-
reiras

Belo Horizonte
2018

L953i

Dados Internacionais de Catalogação na Publicação (CIP)

Luiz, Frederico Caram, 1985 -

Identifying Code Smells with Machine Learning

Techniques / Frederico Caram Luiz. – Belo Horizonte, 2018.

101 f. : il. ; 29,7 cm

Orientador: Fernando Silva Parreiras

Dissertação (Mestrado em Sistemas de Informação e

Gestão do Conhecimento), Universidade FUMEC, Faculdade de

Ciências Empresariais, Belo Horizonte, 2018.

1. Aprendizado do computador. 2. Identificação - Brasil.

3. Computação - Brasil. I. Título. II. Parreiras, Fernando Silva.

III. Universidade FUMEC, Faculdade de Ciências Empresariais.

CDU: 681.3

Ficha catalográfica elaborada pela Biblioteca Universitária-FUMEC

Abstract
Context: Code smells are an accepted approach to identify design flaws in the source
code. Many studies regarding their automatic identification were developed, ranging from
hard threshold metrics based and rule based to machine learning techniques. But there is
still a lack of empirical benchmarks to define when they should be used.

Objective: This study aims at the development of an mapping study of machine learning
techniques and code smells found in literature and of an experiment based on the state-
of-art machine learning techniques identified and applied in a standardized dataset that
reflects a real project scenario in order to create a benchmark for future work.

Method: A mapping study was used to identify the techniques used for each smell and
an empirical experiment based on the previously identified techniques.

Results: From the studied smells, the technique used for Long Method was the one
that performed closer to the original experiments, but yet 34% worst than it, while most
were outperformed by more than 50% and some performed even 86% below the original
experiments. The imbalanced dataset techniques that were used, also performed worst
than it, but still were able to bring improvement, ranging from 1% that was the case of
Long Methods and Feature Envy to more than 100% in the case of Shotgun Surgery and
Parallel Inheritance.

Conclusions: The replicated techniques results diverged from the original experiment.
But techniques for imbalanced data were able improve the existing techniques under these
circumstances. Ensemble models presented the best performance for relationships between
methods and classes, while the Boosting techniques for the ones related to the structure
of classes and methods. For future experiments, we suggest future works to further extend
the database by adding other smells kind and techniques to it to create a broader bench-
marking.

keyword: Code smells, identification, machine learning, positive-unlabeled learning.

Resumo
Contexto: Code smells são uma abordagem bem aceita para a identificação de problemas
de design do código. Muitos estudos envolvendo sua identificação automática já foram
desenvolvidos, abrangendo desde técnicas baseadas em limites rígidos até as baseadas em
machine learning. Mas ainda faltam evidências empricas para definir quais são melhores
para cada cenário.

Objetivo: Este estudo busca desenvolver um estudo de mapeamento de técnicas de ma-
chine learning para a identificação de code smells na literatura e um experimento baseado
nas técnicas estado da arte identificadas a partir dele e aplicadas em um banco de dados
padronizado, refletindo um cenário próximo ao real com o objetivo de criar uma referência
para pesquisas futuras.

Método: Um estudo de mapeamento para identificação das técnicas utilizadas para code
smell e um experimento empirico baseado nas técnincas identificadas préviamente.

Resultados: Dos code smell estudados a técnica used para Long Methods foi a que
performou mais próxima ao experimento original, mas ainda assim 34% pior, enquanto a
maioria das outras performou 50

Conclusões: Os resultados apresentaram variação em relação aos experimentos originais.
Mas as técnicas para bases desbalanceadas conseguiram apresentar melhora em relação
à elas. Os modelos de Ensemble apresentaram a melhor performance em code smells que
envolvem o relacionamento entrem classes e métodos, enquanto as técnicas de Boosting
foram melhores os mais estruturais. Para futuros experimentos, sugerimos estender o
database para incluir mais tipos de code smells e testar novas técnicas para criar um
benchmarking mais amplo.

keyword: Code smells, identification, machine learning, positive-unlabeled learning.

Acknowledgements

In first place I would like to thank my wife Desiree for her love and constant
support and patience during this long period. I would also like to thank my parents and
my sister, whose love and guidance are with me in whatever I pursue. They are the my
role models. A special thanks goes to my supervisor Dr. Fernando Parreiras for all the
guidance he provided, his patience, passion and enthusiasm. Finally a thanks for my fellow
researchers from LAIS lab, in special thanks to Amadeu, Bruno and Daniel for the help
in the literature review and in the results.

List of Figures

Figure 1 – Distribution of papers found in automated search by digital library . . 34
Figure 2 – Number of Papers by year . 38
Figure 3 – Number of papers by Code Smell . 40
Figure 4 – Number of papers by Code Smell Type 40
Figure 5 – Graph representing which smells were assessed in the same paper . . . 41
Figure 6 – Number of Papers by Machine Learning Technique 41
Figure 7 – Relationship between techniques and code smells 43
Figure 8 – Machine Learning techniques F-measure Box-plot 43
Figure 9 – F-Measure technique by code smell . 44
Figure 10 – Machine Learning techniques Precision Box-plot 45
Figure 11 – Precision technique by code smell . 45
Figure 12 – Machine Learning techniques recall Box-plot 46
Figure 13 – Recall technique by code smell . 46
Figure 14 – Research Setup . 52
Figure 15 – Original x Current Experiment (F-Measure) 66
Figure 16 – Original x Current Experiment (F-Measure) with 1/3 smell ratio 66
Figure 17 – Large class results . 67
Figure 18 – Long method results . 68
Figure 19 – Feature Envy results . 68
Figure 20 – Divergent Change results . 69
Figure 21 – Shotgun Surgery results . 69
Figure 22 – Parallel Inheritance results . 70

List of Tables

Table 1 – List of conferences and journals used in the manual search 33
Table 2 – Papers by publication . 37
Table 3 – Open source projects adopted . 38
Table 4 – Objectives X Methods . 51
Table 5 – Basic descriptive stats from the smells 53
Table 6 – Selected techniques by smell . 53
Table 7 – Best performing technique for each smell 63
Table 8 – Basic descriptive stats from the smells 65
Table 9 – Smell ratio . 65
Table 10 – F-Measure summary per smell and technique: Ordered by the median

f-measure . 89
Table 11 – Precision and recall summary per smell and technique: Ordered by the

median precision . 90
Table 12 – Articles selected for SLR . 91
Table 13 – Experiment Results and Confidence Interval (lowerbound(LB), mean

and upperbound(UB)) . 95

List of abbreviations and acronyms

ACDI Alternative Classes with Different Interfaces

CI Confidence Interval

COM Comments

DAC Data Clumps

DC Data Class

DCP Divergent Change

DUC Duplicated Code

FD Functional Decomposition

FE Feature Envy

GC God Class

II Inappropriate Intimacy

IJSEKE International Journal of Software Engineering and Knowledge Engi-
neering

ILC Incomplete Library Class

LAZ Lazy Class

LC Large Class

LM Long Method

LPL Long Parameter List

MC Message Chains

ML Machine Learning

MM Middle Man

OOD Object-Oriented Design

PIH Parallel Inheritance Hierarchies

PO Primitive Obsession

RB Refused Bequest

RQ Research Question

SG Speculative Generality

SS Shotgun Surgery

SW Switch Statements

SC Spaghetti Code

SLR Systematic Literature Review

TF Temporary Field

Contents

1 INTRODUCTION . 19
1.1 Problem . 20
1.2 Objectives . 21
1.3 Motivation . 21
1.4 Adherence to FUMEC’s Graduate Program in Information Systems

and Knowledge Management . 22
1.5 Document Structure . 22

2 MAPPING STUDY . 23
2.1 Introduction . 23
2.2 Background . 25
2.2.1 Code smells . 25
2.2.2 Machine Learning . 27
2.3 Related work . 29
2.4 Research Method . 32
2.4.1 Planning . 32
2.4.2 Research Questions . 32
2.4.3 Search Strategy . 33
2.4.4 Studies Selection . 34
2.4.5 Quality Assessment . 36
2.4.6 Data Extraction and Classification . 36
2.5 Results . 37
2.5.1 Overview . 37
2.5.2 Which code smells are addressed by papers using machine learning tech-

niques for code smells detection? . 39
2.5.3 Which machine learning techniques are used to detect code smells? 40
2.5.4 Which machine learning techniques are the most used for each code smell? 42
2.5.5 Which machine learning techniques performs better for each code smell? . 42
2.6 Discussion . 47
2.7 Threats to validity . 48
2.8 Conclusions . 49

3 METHODOLOGY . 51
3.1 Methods . 51
3.1.1 Empirical Experiment . 52
3.2 Used dataset . 52

3.2.1 Benchmark Techniques . 53
3.2.2 Results Comparison . 53
3.3 Tools . 54

4 RESULTS . 55
4.1 Introduction . 55
4.2 Related work . 56
4.3 Background . 58
4.3.1 Code smells . 58
4.3.1.1 Code Smells definition . 58
4.3.2 Machine Learning . 59
4.4 Experiment Setup . 60
4.4.1 Experiment Design . 61
4.4.2 The smells dataset . 61
4.4.3 Code Smells detection strategy . 62
4.4.4 Evaluated models . 63
4.4.5 Assessing the models . 63
4.4.6 Research questions . 64
4.5 Results . 64
4.5.1 Overview . 64
4.5.2 How does the baseline models perform on the selected dataset? 65
4.5.3 How the techniques recommended for positive/unlabeled settings perform

when compared to the recommended techniques? 66
4.6 Discussion . 70
4.7 Threats to validity . 72
4.8 Conclusions . 72

5 CONCLUSION . 75

Bibliography . 77

APPENDIX 87

APPENDIX A – SLR RESULTS AND ARTICLES 89

APPENDIX B – EXPERIMENT RESULTS 95

19

1 Introduction

It is estimated that, in 2016, there are 3.4 connected devices for each person (Global
Web Index, 2016) and that the software industry moved aroung 3.8 billion dollars last
year (Criteo, 2015). But part of this money is wasted due to software defects, it has
been reported that above 75% of the total software cost is used for maintenance activi-
ties (Bennett and Rajlich, 2000; Liu et al., 2012). A factor that is important for that, is
the quality of the written code, since it affects the readability of the code, and affects its
maintainability (Aggarwal et al., 2002). In addition, it is shown that software maintain-
ers spend around 60% of their time in understanding the code (Abran and Nguyenkim,
1993). But even in cautiously designed systems, the quality of the source code tends to
degrade as the project evolves, since a system’s original design is rarely prepared for every
new requirement and the changes need to be made quickly by different people without
properly adjusting the system’s structure (Seng et al., 2006). The developers also tends
to focus on the addition of the new functions and bug fixes rather than improving soft-
ware maintainability (Tufano et al., 2015). Software engineers also overlook it when it
is seemly complex and when it seems not to be critical to maintain the longevity of the
software (Murphy-hill et al., 2012). This behavior leads to an increase in the software
complexity and the stacking of bad quality code.

A common way to avoid this degradation is to identify and fix those flaws as
they appear, one of the main theories to identify them in object-oriented design is the
detection of code-smells (Mens and Tourwé, 2004). Code smells provide heuristics for
the identification of design flaws in the source code that make software harder to evolve,
comprehend and maintain. Each code smell examines a specific kind of system elements
(class, methods, etc...) that can be evaluated by its characteristics (Olbrich et al., 2009).
One downside it that it is error-prone and time-consuming (Murphy-hill et al., 2012), it is
also up to the programmers interpretation (Fowler and Beck, 1999), and their definition
is not a consensus among developers (Bryton and Abreu, 2009; Fontana et al., 2016).
In order to reduce this subjectivity, automated approaches based on the source code
have been presented (Fontana et al., 2012; Fokaefs et al., 2007; Mantyla et al., 2004;
Rasool and Arshad, 2015), but a relevant part of those approaches are based on code
metrics. (Bryton et al., 2010; Counsell et al., 2010; Marinescu, 2004; Moha and Guéhéneuc,
2010; Rasool and Arshad, 2015). These techniques uses metrics and thresholds that are not
consistent among them, leading to an increasing number of false positives, not representing
real problem (Fontana et al., 2016).Since it does not consider information related to the
context, domain, size and design of the system (Ferme et al., 2013).

For these reason, considering the subjective definition of code smells, it is required

20 Chapter 1. Introduction

that the technique can be aware and sensible to the particular context. For this we pro-
pose a machine learning (ML) approach to help the identification of code-smells by the
developers. The results of these techniques will be compared against state-of-art rules
based techniques to compare the performance of these technique for different situations
and code smells.

1.1 Problem

Code smells can be identified by either manual or automated analysis of the source
code (Moha and Guéhéneuc, 2010). The manual recognition of code smells on the source
code by developers is a error prone, costly and time-consuming activity, since it depends on
the developer’s degree of experience and perception (Counsell et al., 2010). There are also
evidences showing that eradication of code smells is not being achieved to a satisfactory
level because usually the developers are not even aware of their presence (Yamashita and
Moonen, 2013). Another hardship in the code smells identification is that it is subject
to the developers interpretation, what one developer considers a code smell may not be
one from the point of view of another developer (Bryton and Abreu, 2009; Fontana et al.,
2016).

In order to reduce the subjectivity in the code smell identification, attempts were
done to identify useful metrics which can give hints on the existence of design flaws (Bryton
and Abreu, 2009). Another approach that can help reducing this subjectivity is the use of
automatic tools to identify flawed code, it is possible to find diverse tools and techniques
that can be used to identify different kind of code smells. About all of those tools convert
the source code to an intermediate representation, then uses static analysis based on
rules, metrics and thresholds (Fernandes et al., 2016; Rasool and Arshad, 2015). However,
this kind of approach does not consider information related to the context, domain, size
and design of the system (Ferme et al., 2013). Sometimes what is seen as a smell could
be the best way to actually implement or design a (part of a) program. For example,
automatically generated parsers are often Spaghetti Code, large classes with long methods.
Only quality analysts can evaluate their impact in this context (Khomh et al., 2009b).
This lack of context lead to false-positives, more than 50% of the automatically detected
code is not related to architectural problems (Macia et al., 2012). In order to reduce
this uncertainty related to the context, other techniques were proposed such as the ones
that uses graph or social analysis techniques to identify the system structure, that use
statistical methods to identify metrics thresholds and the ones that uses ML to identify
code smell patterns (Rasool and Arshad, 2015).

The later has been attracting growing attention of the academic and corporate
communities (Wen et al., 2012). The main advantage of this kind of techniques is that

1.2. Objectives 21

it can find patterns that are hard to define using predefined or statical rules, being able
to find patterns where even humans cannot see one (Kotsiantis, 2007). But, despite of
its advantages, as a topic that was only recently applied to the code smell identification
problem, it is still limited to only a set of code-smells and still lacks empirical evidences
to support it’s usage.

Given this scenario, the following question arises "What is the efficiency of
ML techniques for code smells identification?".

1.2 Objectives

In the recent times with the growing interest in ML techniques, works were de-
veloped applying it for code smells identification. But no work was done to review and
compare the work that has been done in order to identify what code smells and techniques
were explored and which ones still lacks research and development.

In this context, this work objective is to assess the ML techniques for code smells
identification performance when compared to traditional models. Since ML can provide
new and performing ways of finding code-smells, with more flexibility than heuristics
and metrics based approaches and is a field that has been receiving successive attention
lately (Fontana et al., 2016). It can also help the software companies to reduce rework
and improve quality and reliability, and also helping the software engineers to improve
the productivity.

The specific objectives that decomposes the main objective are:

∙ Obj. 1: Identify code smells identification techniques that uses ML Techniques.

∙ Obj. 2: Define a baseline where future studies on the subject can compare their
results against.

1.3 Motivation

Improving software maintainability and software quality can save money for both
software development companies, teams and their clients (Sjoberg et al., 2013). Quality
can also be a competitive advantage, which affects the company survivability in the long
run. There is continuous work being done in order to improve software maintainability, but
the ML branch is still under development and have plenty room for improvements when
compared with static methods. There is also a lack of empirical data to support the devel-
opment of new research regarding ML techniques for code smell identification (Fontana
et al., 2016). Further developing empirical support can help understanding the machine

22 Chapter 1. Introduction

learning techniques flaws and take actions in order to enhance its performance, providing
us with data about their benefits and gaps.

1.4 Adherence to FUMEC’s Graduate Program in Information Sys-
tems and Knowledge Management
FUMEC’s graduate program in Information Systems and Knowledge Management

is focused on academic knowledge, scientific development and applied research on the In-
formation Systems and Knowledge Management. The program is organized into two main
streams: Technology and Information Systems and Information and Knowledge Manage-
ment. Multidisciplinary approach is a key concept on FUMEC’s graduate program.

This research proposes the application of ML techniques for code smell identi-
fication, in order to improve software reliability. ML can also be used for a handful of
uses, that ranges from biology, medicine, finance, business, logistics, information retrieval
and other applications, it is conceived to allow machines to mimic the human thinking
process (Ekbia, 2010). By mimicking the human thinking process, ML enables computers
help in the decision making process, fitting it into the track of application of statistical
and computational models for decision making.

Code smells are considered a good indicator of design flaws and it is important for
the improvement of software quality. This quality improvement is an important aspect of
software engineering, which is frequently receiving attention of empirical studies. Given
this scenario, the study proposal focus is under the Information Systems in compliance
with FUMEC’s graduate program. The multidisciplinary aspect arise from the business
application of this study which helps the improvement of the quality provided by software
development companies and teams.

1.5 Document Structure
This proposal was structured in 3 chapters. Chapter 1 was the introduction of the

document. Targeting at the first objective chapter 2 presents a Mapping Study about ML
techniques for code smell identification. Chapter 3 describe the methodological procedures
that will be taken for this experiment. Chapter 4 describes an experiment based on the
state-of-art techniques identified in the mapping study, reproduced in a standardized
dataset aiming to accomplish the second objective. Finally chapter 5 brings the conclusion
of the study and a guidance for future experiments.

23

2 Mapping Study

2.1 Introduction
One of the most costly operations involving software development is maintenance.

It has been reported that above 75% of the total software cost is used for maintenance
activities Bennett and Rajlich (2000); Liu et al. (2012). An important factor about it is
the quality of the written code, as it affects the readability, and hence the maintainability
of the code Aggarwal et al. (2002), given that software maintainers spend around 60%
of their time understanding the code they are working at Abran and Nguyenkim (1993).
Even in cautiously designed systems, the quality of the source code tends to degrade as
the project evolves, provided that the original design of a system is rarely prepared for
every new requirement and for quick changes made by different people without properly
adjusting the system structure Seng et al. (2006). Another factor is that developers also
tend to focus on the addition of the new functions and bug fixes rather than improving
software maintainability Tufano et al. (2015). They also tend to overlook the code when
it is apparently complex and when it seems not to be critical to maintain the longevity
of the software Murphy-hill et al. (2012), one way to better the software maintenance is
avoid code smells.

Code smells are code snippets with design problems, their presence in the code
difficult the software maintenance and affects the quality of software. When a code smell
is detected it is suggest to do refactoring, to remove the code smells in code there are
refactoring to each one them. The refactoring improve the code quality but not change
the behave of system Chatzigeorgiou and Manakos (2014); Fowler and Beck (1999). Code
smells provide heuristics for the identification of design flaws in the source code that
makes software harder to evolve, comprehend and maintain. Each code smell examines a
specific kind of system elements (classes, methods, and so on) that can be evaluated by
its characteristics Olbrich et al. (2009). As the software evolves the number of code smells
increase with the time Chatzigeorgiou and Manakos (2010, 2014).

The code smells provide guidelines to identify undesirable behaviour and common
coding mistakes, but they still depend on the interpretation of programmers Fowler and
Beck (1999), since there can be different interpretations according to the each scenario
and they may also be considered critical or not Taibi et al. (2017). The definition of what
is and what is not a code smell in a given context may not be a consensus among devel-
opers working in the same application Bryton and Abreu (2009); Fontana et al. (2016);
Hozano et al. (2017), making their identification an error-prone and time-consuming task
considering the size of commercial applications Murphy-hill et al. (2012).

24 Chapter 2. Mapping Study

In order to reduce this subjective interpretation, automated approaches based on
the source code were presented in previous works Fontana et al. (2012); Fokaefs et al.
(2007); Mantyla et al. (2004); Rasool and Arshad (2015), but a relevant part of those
approaches are based on code metrics. Bryton et al. (2010); Counsell et al. (2010); Mari-
nescu (2004); Moha and Guéhéneuc (2010); Rasool and Arshad (2015). These techniques
use metrics and thresholds that are not consistent among them, leading to a growing
number of false positives, not representing the real problem Fontana et al. (2016) since
it does not consider information related to the context, domain, size and design of the
system Ferme et al. (2013). In this scenario, machine learning techniques can be used
to capture this subjectivity. They are techniques utilized for a wide range of applications
such as: risk management Cowell et al. (2007), medicine Akay (2009), biology Kell (2005),
financial markets Doostmohammadi et al. (2017), among others Fenton and Neil (2007);
Li (2017). And they can also be used for the identification of code smells in source code,
providing more flexibility in comparison to the current metrics-based approaches Kot-
siantis (2007). The tools to identify code smells based on metrics not analyze the past
version of code, so it is not allowed to understand the context of code smell, once some
code smells can be removed naturally in it evolution while others require more effort to
resolve with refactoring Chatzigeorgiou and Manakos (2014).

Studies regarding the application of machine learning techniques are increasing,
but each one uses different models and techniques to achieve this task Rasool and Arshad
(2015). Even with studies appearing it gets harder to find out the ones that perform
better for each code smell. In other words, it is not yet known the real performance about
the machine learning approaches applied to identify code smells. Aiming to solve this
problem this study has as objective clarify the understand of the methods and practices
most frequently adopted in literature when applying machine learning for code smells
identification. Thus, this paper answer the following research questions:

∙ RQ1: Which code smells are addressed by papers using machine learning techniques
for code smells detection?

∙ RQ2: Which machine learning techniques are used to detect code smells?

∙ RQ3: Which machine learning techniques are the most used for each code smell?

∙ RQ4: Which machine learning techniques perform better for each code smell?

To answer these questions, we developed a mapping study on machine learning techniques
and code smells found in literature, covering papers from the introduction of anti-patterns
in 1999 by Fowler and Beck (1999) and including papers published up to December 2016.
The design flaws were categorized under the definition of the works defined by Fowler and
Beck (1999) and Brown et al. (1998).

2.2. Background 25

The study resulted in the classification of 26 papers out of 53 researched papers,
separated and categorized by design flaws and applied techniques. We found that re-
garding F-measure: Association Rules techniques obtained better results on Speculative
Generality, Divergent Change, Large Class and Long Method smells. Random Forest tech-
nique had better results on Large Class and Long Parameter List. On the other hand,
Decision Tree is not good enough to identify Message Chains. While Naive Bayes Classi-
fier presented the worst overall performance among the studied practices on Middle Man,
Long Parameter List and Shotgun Surgery smells.

This paper was organized according to the following structure: Section 2 provides
a background research about code smells, refactoring and machine learning techniques;
Section 3 presents the related works of the area; Section 4 addresses the methodology used
in this work; Section 5 displays the results of the study; Section 6 discusses the results;
Section 7 presents the threats posed to the validity of the study and finally Section 8
shows the conclusion and provides suggestions for future work.

2.2 Background

2.2.1 Code smells

Code smells are symptoms which can but not necessarily have to point to an
actual issue. Therefore, they are not patterns to be avoided, but signals that require a
more thorough examination Walter and Alkhaeir (2016). We follow a short description of
each smell proposed by Fowler and Beck (1999):

∙ Alternative Classes with Different Interfaces: a case in which a class can
operate with alternative classes but the interface of these classes is different.

∙ Comments: misuse of comments to compensate poor code structure.

∙ Data Class: a class that contains data but does not contain logic.

∙ Data Clumps: data items that usually appear together.

∙ Divergent Change: when a class needs to be changed every time another class is
changed.

∙ Duplicate Code: code that does the same thing as another piece of code.

∙ Feature Envy: a method that is more interested in other properties of the classes
than in the ones from its own class.

∙ Inappropriate Intimacy: when two classes are tightly coupled.

26 Chapter 2. Mapping Study

∙ Incomplete Library Class: when the software uses an incomplete library.

∙ Large Class: a class that tries to do a load of things, having plenty of instance
variables or methods.

∙ Lazy class: a class that is not doing enough and should be removed.

∙ Long Method: a method that is long, so it is hard to understand, change or extend.

∙ Long Parameter List: a parameter that is long and difficult to represent.

∙ Message Chains: a chain of calls from one object to another, without adding any
new behaviour.

∙ Middle Man: when a class delegates a great deal of its behaviour to another class.

∙ Parallel Inheritance Hierarchies: a situation where two parallel class hierarchies
exist and are related.

∙ Primitive Obsession: represents the usage of primitives instead of small classes,
making it less meaningful and reusable.

∙ Refused Bequest: a child class does fully support its parent implementation.

∙ Shotgun Surgery: when a class changes requires a broadcast changing of other
classes.

∙ Speculative Generality: when unnecessary code is created anticipating future
changes on software.

∙ Switch Statements: usage of type codes or run-time class type detection instead
of polymorphism.

∙ Temporary Field: the class has a variable which is only used in specific situations.

Mantyla et al. Mantyla et al. (2003) categorized code smells into 8 categories as
shown below:

∙ The Bloaters: represent something that has grown so large that it cannot be
effectively handled. This category covers the following smells: Long-Method; Large
Class; Primitive Obsession; Long Parameter List; and Data Clumps.

∙ The Object-Orientation Abusers: represent code that does not exploit the pos-
sibilities of Object-Oriented Design. The following smells are included in this cate-
gory: Switch Statements; Temporary Fields; Refused Bequest; Alternative Classes
with Different Interfaces; Parallel Inheritance Hierarchies.

2.2. Background 27

∙ The Change Preventers: smells that prevent or hinder the changing or further
development of the system. This category is composed by: Shotgun Surgery and
Divergent Change.

∙ The Dispensables: represent something that is unnecessary and should be re-
moved from the code. Represented by the smells: Lazy class; Data class; Duplicated
Code and Speculative Generality.

∙ The Encapsulators: smells that deal with data communication or encapsulation,
including Message Chains and Middle Man.

∙ The Couplers: smells that increase the coupling of the system, being composed of
Feature Envy and Inappropriate Intimacy.

∙ Others: smells that do not fit in any of the previous categories and are not com-
parable, such as: Incomplete Library Class and Comments.

Code smells can also be considered as symptom of a design level flaw, also known
as anti-patterns Moha and Guéhéneuc (2010). The anti-patterns concept was introduced
by Brown et al. (1998) defining it as a literary form that describes a recurrent solution to a
problem that generates decidedly negative consequences. The studies also use approaches
to identify the code anti-patterns instead of code smells, since they describe more generic
flaws, in this study we use three of them:

∙ The Blob: corresponds to a large controller class that depends on data stored
in surrounding data classes. A large class declares fields and methods with a low
cohesion. A controller class monopolizes the processing done by a system, takes the
main decisions, and directs the processing of other classes.

∙ The Functional Decomposition: consists of a main class in which inheritance
and polymorphism are scarcely used, associated with small classes, which declare a
great deal of private fields and implement sparse methods.

∙ The Spaghetti Code: classes with no structure, declaring long methods with
no parameters, and utilizing global variables for processing. Names of classes and
methods may suggest procedural programming.

2.2.2 Machine Learning

Machine learning techniques can be categorized in three ways: supervised, un-
supervised and semi-supervised. If instances are given with known labels (the human
annotated correct output) then the learning is called supervised, otherwise, when the in-
stances are unlabeled, it is unsupervised learning Jain et al. (1999). There is also a hybrid

28 Chapter 2. Mapping Study

approach, which is the semi-supervised learning that uses both labeled and unlabeled data
to perform an otherwise supervised learning or unsupervised learning task Zhu (2011).

Supervised methods Kotsiantis (2007) are the leading approach used for code
smells identification Fernandes et al. (2016). The following supervised approaches were
identified by Kotsiantis (2007) in his literature review:

∙ Decision Trees: Decision Trees are trees that classify instances by sorting them
based on feature values. Each node in a Decision Tree represents a feature in an
instance to be classified, and each branch represents a value that the node can
assume. Instances are classified starting at the root node and sorted based on their
feature values.

∙ Learning Set of Rules: Decision Trees can be translated into a set of rules by
creating a separate rule for each path from the root to a leaf in the tree. However,
rules can also be induced from training data using a variety of rule-based algorithms.

∙ Single layered perceptrons: Uses a single layer of weights to define a linearly
separable binary classification.

∙ Multi layered perceptrons (Artificial Neural Network): Created to solve
non linear classification problems that cannot be solved by a single layer. A multi-
layer neural network consists of large number of units (neurons) joined together in
a pattern of connections.

∙ Radial Basis Function (RBF) network: An RBF network is a three-layer feed-
back network, in which each hidden unit implements a radial activation function
and each output unit implements a weighted sum of hidden units outputs.

∙ Naive Bayes: Naive Bayesian networks (NB) are simple Bayesian networks which
are composed of graphs with only one unobserved node and a chain of children
observed nodes, with an assumption of state independence between child nodes
and their parent. The Naive Bayes is based on estimating the probabilities of the
unobserved node, based on the observed ones.

∙ Bayesian networks: A Bayesian Network (BN) is a graph based model that es-
tablishes a probability relationship among a set of known variables. The Bayesian
network structure is a graph containing nodes linked with its features. The features
must be conditionally independent from their non-descendants in relation to its
parents.

∙ Instance Based learning: Instance-based learning algorithms are statistically
based and lazy-learning algorithms, as they delay the induction or generalization
process until classification is performed.

2.3. Related work 29

∙ Support Vector Machines (SVM): SVMs are based on the notion of a “margin”
in either side of a hyperplane separating two features. Its optimizing objective is to
increase the margin and create the largest distance between features in the hyper-
plane. The complexity is unaffected by the number of features. So SVMs are suited
to deal with learning tasks where the number of features is large with respect to the
number of training instances.

Unsupervised learning is composed mainly of Clustering Techniques. The cluster-
ing objective is to develop an automatic algorithm that discovers the natural groupings in
the unlabeled data Jain et al. (1999). Clustering algorithms can be broadly divided into
two groups: hierarchical and partitional. Hierarchical clustering algorithms recursively
find nested clusters, while the partitional clustering find the clusters simultaneously. In
semi-supervised clustering, instead of specifying the class labels, constraints are specified,
as a weaker way of encoding the labeled data. Semi-supervised learning can be applied in
place supervised learning, using unlabeled data for training Jain (2010). Semi-supervised
learning has been applied to natural language processing (word sense disambiguation,
document categorization, named entity classification, sentiment analysis, machine trans-
lation), computer vision (object recognition, image segmentation), bio-informatics (pro-
tein function prediction), and cognitive psychology Zhu (2011), and also to address code
smell identification problems Fernandes et al. (2016).

Other algorithms can be used to identify code smells are Genetic Algorithms
(GA). The GAs are algorithms try to imitate natural selection based on biological mech-
anisms Newman (2006). They working with concept of genome and three operators: Re-
production, crossover and mutation, proving robust search in complex spaces, which they
find the optimal solution Goldberg and Holland (1988); Newman (2006); Lee et al. (2011).

2.3 Related work
Rasool and Arshad (2015) elaborated a literature review to identify state-of-art

tools used for mining code smells based on the source code of different software projects. It
identified that earlier code smell detection techniques were focused on static source code
analysis methods for detecting code smells, afterwards it shifted to a combination of static
and dynamic source code analysis methods. Recently, search-based code smell detection
techniques obtained attention, applying code metrics and machine learning methods for
the identification. A large number of code smell detection techniques used source code
metrics for the detection, computing metrics from source code or from third-party tools,
usually aiming at Feature Envy, Data Class, Large Class, Long Method, and Long Pa-
rameter List code smells, while alternative classes with different interfaces and Incomplete
Library Class were not covered. In regard to the tools, many apply different object-oriented

30 Chapter 2. Mapping Study

source code metrics to detect a large number of code smells. They presented high lan-
guage dependency for the detection of code smells, given that 38 out of the 46 tools are
focused on Java language. The same pattern repeated regarding the experiments. The
performance of the tools varied depending on the studied smell, the same happened in
the use of different tools for the same smell. They claim those differences to be due to the
selection of different metrics and thresholds by the different techniques and also criticize
the unavailability of standard benchmark systems for comparing results of code smells de-
tection tools. The dependence on code metrics also made it harder to reuse the techniques
to detect different code smells, the accuracy commonly relied on the selection of threshold
values and may be deceptive. 30% of the tools spotlight the accuracy, that is, precision
and recall, of their technique or tool. The study provided an insight on the evolution of
the techniques used for code smell and the current state of the tools and techniques, iden-
tifying research gaps and opportunities, exposing that the machine learning techniques
have been generating growing interest through the researches. Our study aims to cover
the machine learning techniques, to understand how they are being used and which tech-
niques fit and perform better for each code smell. Different from the given study, that
focuses on general techniques and tools that were used for code smells identification, we
did a mapping study focusing on the machine learning techniques that were applied to
code smells and their performance.

Fernandes et al. (2016) performed a systematic review to identify and document
all tools reported and used in the literature for bad smell detection. From the 22 bad
smells defined by Fowler and Beck (1999), they identified tools to detect 20 of them,
the exceptions are Alternative Classes with Different Interfaces and Incomplete Library
Class. While Duplicated Code and Large Class were the most targeted smells, more than
40% of the tools target at least one of these bad smells. In addition, there were also tools
to identify 41 smells defined by other authors. From the analyzed tools, 30 of them are
plug-ins, 30 are standalone applications and 4 of them are available as both. They found
a concentration of proposed tools for three languages: Java, C, and C++. But only one
out of the top 10 used languages were not covered by any tool. The authors developed a
comparison among the 4 selected tools: inFusion; JDeodorant; PMD and JSpirit, and 2
code smells: Large Class and Long Method, selected because they are the most covered
smells, for Duplicated Code, it was hard to quantify its results. Each tool was tested
agains the projects: JUnit, to check agreement between the tools, and MobileMedia for
agreement, recall and precision. Regarding recall, PMD and JSpIRIT provided the highest
results achieving 50% and 67% of recall respectively. When analyzing precision, inFusion
and PMD had the highest values achieving 100% of precision. This study contributed
for the automatic code smell detection, by cataloguing the tools used for code smells
detection and also the situations in which they can be used. However, this study differs
from ours, since it focuses on tools for code smells detection and not on the techniques, it

2.3. Related work 31

provides little information about the used techniques, as some tools do not provide that
information, whereas our study focuses on the machine learning techniques, excluding
studies that rely only in predefined or user-defined metrics.

Rattan et al. (2013) developed a systematic literature review aiming at identifying
and classifying the existing literature about clone detection, clone management, semantic
clone detection and model based clone detection techniques. In order to do so, 213 studies
were reviewed, where 100 were found to be research studies of software clone detection.
The studies generally used an intermediate code representation, with different granularity,
Abstract Syntax Trees (ASTs) or Parse trees, source code or text and Regularized tokens
are the most frequently used. Regarding the matching technique: metrics/feature vectors
clustering, Suffix Tree based token by token, substring/subtree model comparison and
Dynamic programming were the most common approaches. The authors concluded that
clones definition are still unclear and that there is a lack of empirical studies regarding
the harmfulness of clones. They also concluded that it can be used as principled re-
engineering technique and be beneficial as it is not easy to refactor all the clones due
to cost/risk associated with refactoring. It is suggested that instead of removing clones,
we should have proper clone management facilities. This study is similar to ours for it
also focuses on a code-smell identification and the techniques used for that, but it differs
from our study since it focuses only on one code smell and uses a broader scope for
the techniques and it also contemplates any automated identification task and not only
machine learning techniques.

Al Dallal (2015) reports a systematic literature review that identifies the state-
of-the-art techniques regarding the identification of refactoring opportunities, assessing
and discussing the collected and reported findings. The studies considered 22 refactoring
opportunities; 20 of them are among the 72 activities identified by Fowler and Beck
(1999) [23], and two were proposed by others. It identified that Quality metrics-oriented,
Precondition-oriented and Clustering-oriented were the preponderant techniques. For the
empirical evaluation, intuition-based techniques were the frequently used, followed by
Quality based and Mutation based evaluations. The studies in general used Java open
source projects for their empirical experiments. The author found that the studies focuses
more on Move Method, Extract Class, and Extract Method than in the other refactoring
activities, justifying their importance for the industry, while 72.2% of the refactoring
activities proposed by Fowler were not considered by any study. It was also found that
most of the studies lack empirical data to support their techniques. This study is related
to ours, since the techniques used for refactoring and the techniques for the code smells
identification share common features, such as metrics and techniques aiming at their
identification, but it is different of ours in its nature, as we focus on identifying the code
smells while it focuses on identifying refactorings opportunities.

32 Chapter 2. Mapping Study

2.4 Research Method

This study performed a mapping study on the usage of machine learning techniques
for code smells identification. Mapping studies are based on a clear search strategy, that
ensures the rigor, completeness and a reproducible process, focusing on the identification,
evaluation and interpretation of the available research that is relevant to a particular
question Kitchenham et al. (2010).

The process adopted for mapping study was based on the work of Kitchenham
et al. Kitchenham et al. (2015) that includes three phases: planning, conduction and
documentation. The following subsections describe the steps taken in the planning and
conduction phases. The documentation phase is addressed in the sections 2.5 and 2.6.

2.4.1 Planning

We developed a protocol according to the guidelines provided by Kitchenham
et al. Kitchenham et al. (2015) in order to ensure that the research was executed in a
planned way and not driven by the expectations of the researcher. In the protocol, the
following items were documented as part of the planning for the study: research objectives;
research questions; search strategy; study selection, quality assessment of the studies; data
extraction; and data synthesis and aggregation.

2.4.2 Research Questions

This research focuses on the identification machine learning techniques used for
code smells detection and in order to accomplish that the following questions must be
answered:

∙ RQ1: Which code smells are addressed by papers using machine learning
techniques for code smells detection? RQ1 focuses on the most common code
smells detected by studies utilizing machine learning techniques. The answer to
this research question can help identify code smells that have not been explored in
existing research and those that can be opportunities for future work.

∙ RQ2: Which machine learning techniques are used to detect code smells?
RQ2 aims in the identification of machine learning techniques commonly used to
detect code smells in the literature. This information can be useful to determine the
most popular machine learning techniques used in the code smells domain and also
to generate a list of potential machine learning techniques that were not explored
for code smells detection.

2.4. Research Method 33

∙ RQ3: Which machine learning techniques are the most used for each
code smell? RQ3 is concerned with the relationship between the machine learning
techniques and the code smells detected by these techniques. The outcome of this
question can provide insights on the association between machine learning tech-
niques and types of code smells. It could also lead to the identification of gaps in
research pointing to potential machine learning techniques that can be used for
similar code smells but have not been used for this intent.

∙ RQ4: Which machine learning techniques perform better for each code
smell? RQ4 compares the performance of different machine learning techniques for
code smell detection. The answer to this question can help researchers define which
machine learning techniques to use when studying different code smells.

2.4.3 Search Strategy

In order to find relevant papers to achieve the goals of this study, we conducted
searches based on the recommendations by Kitchenham et al. Kitchenham et al. (2015).
In the first step, we used personal experience to define a list of journals and conferences,
summarized in table 1, used to establish the quasi-gold standard (QGS). The QGS for
this mapping study is composed of 21 articles. The following digital libraries were used
in the automated searches: ACM, IEEE, Science Direct and Wiley.

Table 1 – List of conferences and journals used in the manual search

Conference/Journal Title
- Empirical Software Engineering
- Expert Systems with Applications
- International Conference on Software Engineering (ICSE)
- IEEE Transactions on Software Engineering
- International Conference on Frontiers in Intelligent Computing:
Theory and Applications
- International Conference on Software Maintenance (ICSM)
- International Symposium on Software Reliability Engineering (ISSRE)
- Journal of Software Maintenance and Evolution
- Journal of Software: Evolution and Process
- Journal of Systems and Software
- Knowledge-Based Systems

The definition of the search string followed these steps:

1. Derived major terms for machine learning and code smells from research articles.

2. Broke major terms down into smaller terms the machine learning related terms were
based on Wen et al. (2012).

34 Chapter 2. Mapping Study

3. Identified alternative spellings or synonyms for the smaller terms.

4. Checked the search terms in known relevant papers.

5. Used Boolean operator OR combined alternative spellings and synonyms. Used
Boolean operator AND linked machine learning and code smells terms.

This is the search string used for papers retrieval in automated searches: "("code
smell" OR "bad smell") Fowler and Beck (1999) AND ("learning" OR "data mining" OR
"artificial intelligence" OR "pattern recognition" OR "case based reasoning" OR "decision
tree" OR "regression tree" OR "classification tree" OR "neural net" OR "genetic program-
ming" OR "genetic algorithm" OR "Bayesian belief network" OR "Bayesian net" OR "as-
sociation rule" OR "support vector machine" OR "support vector regression")"Wen et al.
(2012). The automatic search returned 1021 papers distributed among the digital libraries
as summarized in Figure 1.

Figure 1 – Distribution of papers found in automated search by digital library

The search performance was measured using the ‘quasi-sensitivity’ which is the
recall of the search. The result had a sensitivity of 85% higher than the threshold of 70%
to 80% proposed by Zhang et al. Zhang et al. (2011a). Based on this result, we proceeded
to the next phase of the mapping study.

2.4.4 Studies Selection

The selection criteria targets at filtering relevant studies to the research ques-
tions Kitchenham et al. (2015). We defined three inclusion and three exclusion criteria.

Inclusion criteria:

2.4. Research Method 35

∙ Papers from computer science, information system or software development fields.

∙ Papers describing the use of machine learning techniques applied to code smells
detection.

∙ The studies should be peer-reviewed.

∙ The studies should be published in English.

Exclusion criteria:

∙ Remove duplicates.

∙ Remove studies in which the code smells detection is done manually.

∙ Remove works that were not completed.

∙ Remove non-empirical studies.

The selection process consisted of five stages as shown bellow and it was admin-
istered by three of the authors. Each step was peer-reviewed by graduated students, and
the results were compared and discussed in order to reach a consensus.

1. The databases search returns 1021 papers

2. After the exclusion of duplicate paper 683 papers left

3. Evaluated the type of review, fieldof the research and publication language 286
papers left

4. Removed studies unrelated to machine learning techniques for code smells identifi-
cation and also non-empirical studies 155 papers left

5. Removed papers based on titile and abstract 53 papers left

In the first stage of the selection process, we removed 338 duplicated papers and moved 683
papers to stage 2. Stage 2 evaluated the type of review, field of the research and publication
language. This stage selected 286 articles to move to the next part of the process. The
studies were then filtered by title in stage 3, removing studies unrelated to the usage of
machine learning techniques for code smells identification and also non-empirical studies
resulting in 155 articles. In stage four, we applied the same criteria as in stage three
but the filtering was based in the abstract of the studies. Stage 4 selected 53 papers to
continue in the review process going through quality assessment and classification.

36 Chapter 2. Mapping Study

2.4.5 Quality Assessment

In this mapping study we used the quality assessment to have a better insight
about the selected papers to exclude papers for the final data extraction and analysis.
Our intention was to use the detailed quality information about the paper during analysis
and also to identify which percentage of the papers would have comparable results.

The quality assessment questions used in our study were based on the quality
checklist defined by Dybå and Dingsøyr Dybå and Dingsøyr (2008):

∙ QA1: Is the paper based on research (or is it merely a lessons learned report based
on expert opinion)?

∙ QA2: Are the aims of the research defined explicitly?

∙ QA3: Is there experimental design appropriate and justifiable?

∙ QA4: Is the proposed estimation method comparable with other methods?

∙ QA5: Are the findings of study stated and supported by the reported results?

∙ QA6: Does the study add value to the academy or to the practice communities?

The quality of the papers was assessed by three of the researchers during data
extraction. All of them performed the quality assessment checklist for each of the papers.
In order to reach a consensus a Delphi method Dalkey and Helmer (1963) was used.
Initially, each participant received a spreadsheet containing the selected papers and the
quality assessment questions, which they had to fill with either yes or no. In each round
a paper was selected and the researchers answers to each of the quality questions was
compared, in case of disagreement the participants had to justify and discuss their answers,
then another round would be executed. This process was repeated until a consensus was
achieved.

2.4.6 Data Extraction and Classification

The data extraction process was conducted by three of the authors. Each author
read the papers and provided values for the items available in the classification form. The
data was reconciled using discussion and moderation to achieve an agreement between
the reviewers.

The classifications used in this phase were Fowler and Beck (1999); Rasool and
Arshad (2015); Fernandes et al. (2016):

∙ Data source: The projects used for the technique assessment;

2.5. Results 37

∙ Language: The language of the used project;

∙ Metrics: Which metrics were taken into consideration;

∙ Baseline: The baseline against which the technique performance was compared;

∙ Addressed Code Smells: The code smells addressed by the paper.

2.5 Results
In this section we present the results of the systematic mapping. Firstly, we show

an overview of the selected papers and then the answers to the research questions and
their findings.

2.5.1 Overview

In this study we identified 26 papers that used machine learning techniques for
code smell identification. They were published between 1999 to 2016 and they used ex-
perimentation as methodology. 65% of the papers were published in conferences and the
other 37% were published in journals. 5 publications were represented by more than one
publication venue: Annual Conference on Genetic and Evolutionary Computation; Inter-
national Conference on Software Engineering; Journal of Systems and Software; Expert
Systems with Applications; Journal of Software: Evolution and Process. These publica-
tions represented almost half of the selected papers as shown in Table 2.

Table 2 – Papers by publication

Publication # of studies
Annual Conference on Genetic and Evolutionary Computation 3
International Conference on Software Engineering 3
Journal of Systems and Software 3
Expert Systems with Applications 2
Journal of Software: Evolution and Process 2
Others 13

Through Figure 2 it is possible to see a trend in the publications over the years.
Figure 2 shows a greater interest in studies identifying code smell using machine learning
techniques in 2015 and 2016 than between 2002 and 2014. The number of researches in
the last two years overcame the numbers of the previous years. It is worth remembering
that the code smell term was used by Kent Beck in the late 1990’s and the research about
code smell was focused on other techniques as metrics. Detection of code smells based in
machine learning techniques has not been extensively explored Fontana et al. (2013).

All papers selected in this study identified code smells analyzing projects developed
with Java language. Out of 26 papers, 23 used open source projects, while 3 used private

38 Chapter 2. Mapping Study

Figure 2 – Number of Papers by year

data source. We identified 88 open source projects as dataset used in research, the dataset
more frequently used was the Xerces, followed by JHotDraw, Eclipse Core and ArgoUML.
Among the 88 datasets, 62 of them were used once. As detailed by the Table 3 below:

Table 3 – Open source projects adopted

Software # Papers Software # Papers
Xerces 6 Apache Commons Logging 1
JHotDraw 5 JDI-Ford 1
Eclipse Core 5 Apache Derby 1
ArgoUML 4 JFreeChart 1
JFreeChart 3 Apache James Mime4j 1
GanttProject 3 JRDF 1
Apache Cassandra 2 Apache Tomcat 1
Rhino 2 Maven 1
Qualitas Corpus 2 ApacheAnt 1
GanttProject 2 Pixelitor 1
jEdit 1 ApacheAnt 1
Ant 1 sapphire 1
Log4J 1 Android API (framework-

opt-telephony)
1

And Engine 1 XWorks 1
JabRef 1 BCEL 1
Apache Commons Codec 1 Jboss 1
Android API (tool-base) 1 Closure Compiler 1
Apache Commons IO 1 JDK 1
nebula.widgets.nattable 1 dltk.core 1
Apache Commons Lang 1 Android API (sdk) 1
Xerces 1 Android API (frameworks-

base)
1

JGraphx 1 Aardvark 1
egit 1 platform.resources 1
JHotDraw 1 Gitblit 1
FindBugs 1 Ant-Apache 1
jUnit 1 Google Guava 1

2.5. Results 39

FreeMind 1 ANTLR 1
Lucene 1 graphiti 1
GanttAzureus 1 Xom 1
Mongo DB 1 Guava 1
Android API (frameworks-
support)

1 Apache Ant 1

Nutch 1 Hibernate 1

2.5.2 Which code smells are addressed by papers using machine learning
techniques for code smells detection?

In this section, in addition to Fowler and Beck (1999) smells and Brown et al.
(1998) anti-patterns we also the included a classification called "others", meant to capture
smells defined by other authors and code-flaws not related to a specific smell, since the
authors aim at code metrics optimization instead of a specific smell.

Comparing the studied code-related design flaws using machine learning, the ones
with higher occurrence were Feature Envy smell and BLOBs, both studied by 5 papers,
followed by Long Methods that showed up in 4 papers. While Comments , Primitive
Obsession, Refused Bequest, Alternative Classes with Different Interfaces and Incomplete
Library Class were not addressed by any of the studied papers. The distribution of the
smells is displayed in Figure 3. Except for the Duplicated Code, which is one of the most
studied smells, the other smells are coherent with the ones identified by Zhang et al.
(2011b). The category Others, composed mainly of optimization in the code metrics,
appeared 8 times, using alternatives to the traditional code smells.

When grouping by the classification defined by Mantyla et al. (2003) it is possible
to observe that the main focus regarding the addressed type of smell are the Bloaters
representing 35% of the studied smells. As detailed on Figure 4.

When analyzing the smells studied together, one of the strongest co-occurrences is
between BLOB, Spaghetti Code and Functional Decomposition. One of the main reasons
is that they use the anti-patterns definition by Brown et al. (1998), while the others are
defined by Fowler and Beck (1999). Long Parameter List, Large Class and Long class also
presented a high correlation, a possible explanation is that they share the same type, what
makes it easier to apply the same kind of algorithm to all of them. The co-occurrence
graph is shown in details in figure 5.

40 Chapter 2. Mapping Study

Figure 3 – Number of papers by Code Smell

Figure 4 – Number of papers by Code Smell Type

2.5.3 Which machine learning techniques are used to detect code smells?

The leading technique in the analyzed papers was the Genetic Algorithm which
appeared 8 times. This technique is used in search-based techniques and focuses on op-
timizing one or more metrics by mutating and enhancing the code. It was followed by
Naive Bayes Classifiers that appeared 4 times. Whereas approaches such as Linear dis-
criminant analysis; Decision Tree; Support; Vector Machine; Directed Acyclic Graph; and
Text-Based; showed up once. The distribution can be viewed in Figure 6.

Regarding the kind of technique used, the supervised techniques were the majority,
being used in 32 tests (88%); Semi-supervised and unsupervised techniques appeared

2.5. Results 41

Figure 5 – Graph representing which smells were assessed in the same paper

Figure 6 – Number of Papers by Machine Learning Technique

42 Chapter 2. Mapping Study

6% each. The results were expected since supervised tests are the most often used in
researches Kotsiantis (2007).

2.5.4 Which machine learning techniques are the most used for each code
smell?

The smells addressed by the techniques were coherent with the smells that ap-
peared in the related papers Fernandes et al. (2016), showing a high level of redundancy.
The smell focused by most of the techniques was Feature Envy, which was aimed by 9
techniques (64%). Followed by Long Method with 8 techniques (57%) and Long Parame-
ter List with 7 (50%). From the smells targeted by the studied papers, the ones covered
by less techniques were Speculative Generality, Spaghetti Code, Data Class, God Class,
Parallel Inheritance and Divergent Changes with 2 techniques each (14%).

From a machine learning technique perspective, the Association Rules technique
was the technique with the highest usage, covering 13 smells (59% of them), followed by
Linear Statistics with 11 smells (50%), Naive Bayes and Random Forest with 9 smells
(43%). While Text-Based and Linear Discriminant Analysis with 1 smell (5%) are in the
lower half.

When comparing the relationship between the code smell and the techniques, there
was a relationship between the following techniques and the respective code smells: As-
sociation Rules for Divergent Change, God Class, Data Clumps, Parallel Inheritance,
Shotgun Surgery and Speculative Generality; Bayesian Networks for Speculative General-
ity; Clustering for God Class and Parallel Inheritance Hierarchies; Genetic Algorithms for
Spaghetti Code; Linear Statistics for Data Clumps and Semi Supervised for Speculative
Generality. The relation between smells and techniques can be visualized in Figure 7.
When analyzing the smell categories, we found out the Association Rules technique with
a relevant focus on the Change Preventers type of smell, as the usage of the technique
focus on the relationship between methods and classes. The other smell types did not
show any relevant relationship.

2.5.5 Which machine learning techniques performs better for each code smell?

One hardship we found when comparing the performance of the techniques is the
lack of standardized data. 14 out of the 26 papers provided performance information.
From those, 13 provided precision data, 12 provided recall values and 6 provided us with
F-measures. We used the recall and precision data provided by the other to calculate
their f-measures as well as to have a comparison measure. In order to have comparable
parameters, we also selected the papers that used the same baseline as the majority of
the articles, in this case a manual annotation of the code smells.

2.5. Results 43

Figure 7 – Relationship between techniques and code smells

In terms of f-measure the best average performance was provided by Decision
Tree, followed by Random Forest, Semi-supervised and Nearest Neighbor techniques.
While Text-Based, Linear Discriminant Analysis and Naive Bayes presented the worst
performance overall between the studied practices, as demonstrated by Figure 8.

Figure 8 – Machine Learning techniques F-measure Box-plot

When comparing the results by f-measure as demonstrated by Figure 9, it is pos-
sible to notice that the Association Rules technique performed above the others for Di-

44 Chapter 2. Mapping Study

vergent Changes and Speculative Generality smells, the ones covered by this technique.
But it performs poorly for Duplicated Code and Feature Envy, when compared to the
other techniques. Decision Tree was also the best performing technique for Middle Man
and Shotgun Surgery smells, while Random Forest had an outstanding performance for
Long parameter list and Semi-supervised techniques for Duplicated Code. Naive Bayes
on the other side, performed poorly for Long Parameter List, Middle Man and Shotgun
Surgery. In regard to the other smells, there was no outstanding technique.

Figure 9 – F-Measure technique by code smell

When analyzing the techniques by precision, the Linear Discriminant Analysis
technique presented the best average performance, followed respectively to its performance
by Association Rules, Semi-supervised and Decision Tree. In this aspect the worst per-
forming techniques were the Bayes-based techniques: Naive Bayes Classifier and Bayesian
Networks. The results can be visualized in Figure 10.

Comparing the techniques by precision, Association Rules, also demonstrated an
outstanding performance on Divergent Changes and Speculative Generality, where it is
the only technique used. Semi-supervised techniques had an outstanding performance for
Duplicated Code, Random Forest for FE and Decision Tree for Lazy Class and Middle
Man also worth mentioning. We had the Bayesian Networks and Naive Bayes Classi-
fiers performing poorly than the other techniques on the smells. Those observations are
displayed in Figure 11.

When compared by recall, the techniques, in general, performed above 80%. The
best performing techniques under these perspectives were: Bayesian Networks, Decision

2.5. Results 45

Figure 10 – Machine Learning techniques Precision Box-plot

Figure 11 – Precision technique by code smell

Tree, Random Forest, Nearest Neighbor, Linear statistics, Semi-supervised, Genetic Al-
gorithm and Clustering. While the worst performance came from Naive Bayes classifier,
Text-Based and Linear Discriminant Analysis, as displayed in Figure 12.

We assessed the technique by smells under a recall perspective as demonstrated

46 Chapter 2. Mapping Study

Figure 12 – Machine Learning techniques recall Box-plot

in Figure 13. As occurred in the previous perspective, we have the Naive Bayes clas-
sifier performing worst in general. Other techniques that displayed a bad performance
were Random Forest for Middle Man, Decision Tree for Message Chain and Text-Based
technique for Long Method.

Figure 13 – Recall technique by code smell

2.6. Discussion 47

2.6 Discussion

This research tried to comprehend the patterns regarding machine learning applied
for code smells identification. The study covered the papers in the period of 1999 to 2016,
although no paper was published on the matter for about 2 years after the publication of
the code smells by Fowler and Beck (1999) and it has been an active research topic for
the last 2 years, as shown on Table 2.

By studying the smells it was possible to assert that contrary to Fowler and Beck
(1999); Rasool and Arshad (2015); Fernandes et al. (2016); Rattan et al. (2013) that
showed the Duplicated Code as the leading smell, the ones using machine learning showed
more concern about Feature Envy, BLOB and Long Methods, the latter was also covered
by code smell detecting tools as highlighted by Rasool and Arshad (2015). There is in-
creasingly focus on search based techniques, based on genetic algorithm, coinciding with
the results found by Rasool and Arshad (2015).

Regarding the techniques, although techniques such as Naive Bayes and Nearest
Neighbors have been used more often than the others due to their simplicity, on the
overall we did not find any killer technique receiving more attention, corroborating with
the study by Fernandes et al. (2016), which found a high variance in the result when
comparing the same technique for different code smells. However, when comparing the
techniques for each code smell, we found that the following techniques are more used
for the following specific smells: Association Rules for Divergent Change, God Class,
Data Clumps, Parallel Inheritance, Shotgun Surgery and Speculative Generality; Bayesian
Networks for Speculative Generality; Clustering for God Class and Parallel Inheritance
Hierarchies; Genetic Algorithms are more used for Spaghetti Code; Linear Statistics for
Data Clumps and Semi-supervised for Speculative Generality. We also found that although
the machine learning techniques were used for 18 out of the 22 Fowler and Beck (1999)
smells, it still covers less smells than the existing smell detecting tools, that as stated
by Rasool and Arshad (2015) and Fernandes et al. (2016) on their reviews covered 20 out
of the 22 smells.

Comparing the performances we found that on average Decision Tree, followed by
Random Forest, had the best performance, agreeing with the experiment by Fontana et al.
(2016) which found Decision Tree and Random Forest related algorithms to outperform
others on smell identification tasks. Semi-supervised and Nearest Neighbor classifiers also
slightly outperformed the remaining techniques, while Text-Based, Linear Discriminant
Analysis and Naive Bayes presented the worst performance overall between the studied
practices, going against the findings of Fontana et al. (2016); Soltanifar et al. (2016)
that found the Bayes approaches performing well for class-related smells. There were
also techniques that performed better for specific smells such as Association Rules for
Divergent Changes and Speculative Generality, Decision Tree for Lazy class, Middle Man

48 Chapter 2. Mapping Study

and Shotgun Surgery smells, Random Forest for Long parameter list and Semi-Supervised
techniques for Duplicated Code. When comparing the same techniques, used for the same
smells, there is a disparity caused by the different metrics and features selection for the
different techniques, given that the performance of the algorithm can only be as good as its
input Chakraborty and Joseph (2017). Some techniques provided metrics on the technique
level, but did not give information on smell level and were excluded from comparison. In
this work we found papers using search-based approach as Genetic Algorithms to improve
the automation of refactoring, for this propose they find code smells. For instance, despite
the Genetic Algorithm is the technique that more appeared in the researches, but none
of papers referenced their results separated by each code smell, difficultly comparisons.

This study also found that the papers lack comparable results, using the same
data and performance metrics, a recurring problem in a significant number of studies so
far Rattan et al. (2013); Al Dallal (2015); Rasool and Arshad (2015); Fernandes et al.
(2016). They also aim at the same smells, showing a high redundancy between the different
techniques, the same happened when comparing tools as identified by Rasool and Arshad
(2015); Fernandes et al. (2016). This factors turn the comparison of performance metrics
between techniques a harder and inaccurate task, making the results less reliable and the
studies harder to reproduce.

2.7 Threats to validity

We have selected the search terms according to the research questions, taking into
consideration the defined acceptance criteria and have used them to retrieve the relevant
studies in the four electronic databases. Although some relevant studies may not use the
terms related to the research questions in their titles, abstracts or keywords. We also left
out broader terms such as refactoring and anti-patterns on purpose, in order to reduce
the noise during the research stage, since terms can be referred to other fields out of code
smells, leading to unrelated papers. As a result, we may have the high risk of leaving out
these studies in the automatic search process. In order to mitigate this risk we have defined
a selection criteria that strictly complies with the research questions to prevent the desired
studies from being mistakenly excluded. In addition to that, the decision regarding study
selection was made through double confirmation, taking separate selections by graduated
researchers and a disagreement resolution for the divergent selections. However, relevant
studies may have been missed. If such studies do exist, we believe that the number of
them is reduced.

Another threat to validity is that the papers use different projects to assess the
results, but even the studies that use the same project use different annotations to train the
data, decreasing the reliability of the comparisons of performance. This threat is increased

2.8. Conclusions 49

by publication bias as the researches tend to release only positive results, avoiding the
negative ones, and also tend to show that their results outperform the others. In order
to mitigate this threat we have registered the baseline that each study used, avoiding the
comparison of studies developed on different projects with different baselines.

2.8 Conclusions
This study reviewed 26 papers covering machine learning techniques for code smells

identification. For each of these smells we evaluated the studied smells, the techniques and
how they relate to each other and the performance of each of these techniques for the
code smells.

We found out that the techniques perform close to each other, but Decision Tree,
Random Forest, Semi-supervised and Nearest Neighbor techniques had better perfor-
mance overall, besides the fact that they also tend to be heterogeneous covering smells
from different types, due to this fact, the techniques tend to have a high redundancy,
without specializing in a single smell. Exceptions for those findings were the Bayes ap-
proaches that performed worst than the others in general. The Association Rules and
Decision Tree algorithms displayed better usage for smells that involve the relationship
between different methods, classes and structures.

We also faced problems regarding the lack of comparability of the studies, since the
studies use annotations done by their own personal instead of using a common base, they
also did not publish the results using the same metrics, making it harder to compare and
assess their performance, reducing the reliability of the study and performance assertions.

51

3 Methodology

Based on the results of the Mapping Study this study proposes the reproduction of
the state-of-art Machine Learning approaches for code smell identification in a standard
database. The methods were selected from the Mapping Study based on their performance,
where the best performance approaches for each code smell was selected.

In order to accomplish this we used an empirical experimental setup as it is meant
to find the result that best perform according to the goal by controlling one or more vari-
ables (Easterbrook et al., 2007). The results will be assessed by a quantitative approach,
since mathematics and statistical methods were used to test and explain the relationship
between the variables (Creswell, 2013). From the objective point of view, the study is
exploratory, since this kind of study focuses on the description of the phenomenon being
studied (Kothari, 2004) and this study tries to describe the current stage in the usage of
ML techniques applied for code smell. The relationship between the study objectives and
the used methodology can be seen in table 4.

Table 4 – Objectives X Methods

Objective Method
Discover code smells identification tech-
niques that uses ML Techniques

SLR regarding ML techniques for code
smells identification

Define a baseline where future studies
on the subject can compare their results
against.

Empirical experiment comparing ML
techniques identified in the literature in a
standardized dataset.

3.1 Methods

In order to compare the performance of the machine learning techniques, an em-
pirical experimental was developed in a controlled environment, using the same database,
that was split in: training and testing set, these sets will be the same for the different
models. So that the only variable that will be changed during the experiment will be
the machine learning techniques. Adjustments, such as re-engineering and features ex-
traction were done according to the approaches identified in the literature for the diverse
techniques. The research setup can be visualized in the Figure 14

In the following subsections we will detail about the used methods and techniques.

52 Chapter 3. Methodology

Figure 14 – Research Setup

3.1.1 Empirical Experiment

(Fittkau, 2011). Due to the previously stated fact, for a bulk of the process, tools
and techniques in the field, the question "under which circumstances is it better than
another" lacks an answer (Juristo and Moreno, 2001). And the same is true for the ML
techniques applied for code smells detection, in order to fill this gap we propose a empirical
experiment to compare ML techniques for code smell identification in a highly imbalanced
dataset.

The main feature that is common to the experiments is varying something with
the intention to discover what happens to something else (Basili, 2007). In this study the
techniques and code smells variables will vary, while keeping the source code variables
state. With this, we intend to figure out the impact that the techniques can cause in the
code smell identification performance. Since the units will not be assigned randomly, the
experiment type will be a quasi-experiment.

3.2 Used dataset
In order to compare the ML techniques for code smell identification, a common

code should be used to guarantee a controlled and reproducible environment. It is also
important for future replicability for the code base license to be opened for any researcher,
and it also have to keep track of previous version, since a change in the version can affect
the replicability. For that end the Landfill Data Set will be used, since it is a collection
of software systems intended to be used for empirical studies of code smells, providing a
resource that supports reproducible studies of software.

The corpus is composed of 2 datasets, each is composed of 20 open source systems,
with eight annotated code smells, but since two of them are test smells which are out of
the scope of this experiment we will use the six remaining: Divergent Change, Shotgun
Surgery, Parallel Inheritance, Blob, Long Method and Feature Envy (Palomba et al.,
2015b). Since the datasets only contains the positive annotations (the classes, methods
or relationships which has smells), we will work with it in a positive / unlabeled setup,

3.2. Used dataset 53

where the unlabeled part of the set will be the code that the parts of the code that is not
annotated as positive. The descriptive statistics for the data in the dataset can be found
in table 5.

Table 5 – Basic descriptive stats from the smells

Smell Projects Smells By
Project

Unlabeled
By
Project

Ratio By
Project

Deviation % Devia-
tion

Large Class 36 6.86 989.22 0.0120 0.0218 182%
Long Method 19 21.58 753.26 0.0270 0.0361 134%
Feature Envy 27 4.67 2,659.96 0.0059 0.0089 151%
Parallel Inheri-
tance

7 2.71 645.00 0.0173 0.0306 177%

Divergent Change 9 1.11 1,203.78 0.0024 0.0024 102%
Shotgun Surgery 5 2.80 1,498.80 0.0036 0.0056 156%

3.2.1 Benchmark Techniques

To check the performance of the ML techniques we will apply and measure it in a
standardized dataset, that can be used by future studies. Based on our Mapping Study
results, we selected the best performing techniques for each code smell, but since we are
relying on the Landfill Dataset to run the experiments, we will use only the smells that
it supports, as can be seem on table 6.

Smell Techniques
Divergent Change Association Rules

Feature Envy Decision Tree, Random Forest and Naive Bayes
Large Class Decision Tree, Random Forest and Naive Bayes

Long Method Decision Tree, Random Forest and Naive Bayes
Parallel Inheritance Association Rules

Shotgun Surgery Association Rules

Table 6 – Selected techniques by smell

3.2.2 Results Comparison

It is important to establish a clear comparison and analysis criteria for code smell
detection tools results. Since replication play an important role for establishing bench-
mark systems (Shull et al., 2008). It is a hard task finding common tools that performed
experiments on common systems for extracting common smells, as the techniques per-
formed experiments on different systems and present their results in different formats. In
general, the publications about tools present the number of detected smells, and one can-
not exactly view which class, method, or artifact of source code is a cause of a particular
code smell (Rasool and Arshad, 2015).

54 Chapter 3. Methodology

Furthermore, even though the precision, recall and f-measure are seldom calcu-
lated, it was the leading metric identified in the Mapping Study presented in the previous
chapter. These are also used statistical methods commonly used in quantitative studies,
particularly when imbalanced positive/negative ratios are present, providing an appropri-
ate way to quantify and assess the reliability of a gold standard in these studies (Hripcsak
and Rothschild, 2005).

3.3 Tools
Since the Landfill Data Set that will be used as the Sample Data and there is an

abundance of studies based on the Java language, this will be used as the base language
for this study. The Java Programming Language platform provides a portable, inter-
preted, high-performance, simple, object-oriented programming language and supporting
run-time environment while keeping a simple and friendly syntax (Gosling and McGilton,
1995). For the ML techniques replication and execution we will use the Python language,
since it is currently the most used language for ML related tasks, it has a huge community
supporting and constantly updating the frameworks and packages. From these we used
the sklearn framework for the development of the ML models, we also used pandas and
numpy for data handling and manipulation, for the under/oversampling technique im-
blearn framework was used. We also used the XGBoost, CatBoost and LightGBM python
packages.

55

4 Results

4.1 Introduction
Code smells, also known as code bad smells, are "a surface indication that usually

corresponds to a deeper problem in the system" Fownler (2016). Introduced by Fowler and
Beck (1999) in 1999 where the author conceptualize each of them and also provide some
guidance on refactoring them, since then their impact on software maintainability and
flexibility were targeted by many studies Mens and Tourwé (2004); Olbrich et al. (2009).
But even though their concepts are clearly defined, their identification is still subjective
to the developer’s interpretation Fowler and Beck (1999). Studies found that even among
experienced developers working in the same application the existence of a given code
smell may not be a consensus Bryton and Abreu (2009); Fontana et al. (2016); Hozano
et al. (2017). The manual detection of code smells is time consuming, non-repeatable and
does not scale so it could benefit from the usage of automated approaches for code smell
identification Marinescu (2004).Many other studies on the automated identification were
proposed Fontana et al. (2012); Fokaefs et al. (2007); Mantyla et al. (2004); Rasool and
Arshad (2015), but even though they make it easier to identify code smells, they still
fail to bring context, domain, size and design of the system to the identification Ferme
et al. (2013). Given this context, machine learning based techniques can bring some more
flexibility Kotsiantis (2007).

There are tools Fernandes et al. (2016) and techniques Rasool and Arshad (2015)
for the code smell detection in literature, helping the developer to identify potential
flaws that he or another developer may have missed initially. Even though the usage of
machine learning based techniques is recent and consequently has less studied and tested
techniques, it is growing steadily. But we still lack comparable results that allows us to
identify which one should be used for each smell, this is aggravated by the subjectivity of
the code smells so that even for the same system the smells selected by the developers are
very likely to differ from one another Palomba et al. (2015b). Another common issue is
that most of the experiments rely on a Positive/Negative set that usually contains a high
smell ratio Maneerat and Muenchaisri (2011); Fontana et al. (2013); Fu and Shen (2015);
Palomba et al. (2015a); Fontana et al. (2016), which doesn’t reflect a realistic ration and
may mislead the results.

In order to address these problems, this study aims to developing the state-of-
art machine learning techniques in a standardized dataset that reflects a real project
scenario in order to create a benchmark for future work. For that end, we developed an
experiment based on the machine learning techniques for code smells identification that

56 Chapter 4. Results

better performed in literature. For this we will use a public dataset named landfill Palomba
et al. (2015b) composed of 2 databases that sums 1770 annotated smells spread across
8 different types of smells. The usage of an open and standardized data also contributes
to the replication of the study and consequent comparison of the used methods. Since it
only provides positive examples of annotated smells, this represents the machine learning
problem as a positive-unlabeled problem, this setup represents more accurately the code
smell identification problem, since it has a more realistic smell ratio. We used it as a
unlabeled instead of a negative set because it is not feasible to manually annotate the
whole code and it is unlikely that the code contains no further smells.

The study resulted in the development of a reproducible and open source algo-
rithm, implementing the state-of-art technique identified in the literature, as well as some
technique that were proven to work better under this experiment setup. We found that
Boosting and Ensemble models proved to work better for this experiment than the ones
identified on literature, but none of the technique were able to achieve results as good
performing as the obtained as the original papers.

This paper was organized according to the following structure: Section 2 presents
works related to this project; Section 3 provides a background about the code smells
and machine learning techniques necessary for this experiment; Section 4 addresses the
methodology used in this work; Section 5 displays the results of the study; Section 6
discusses the results; Section 7 presents the threats posed to the validity of the study and
finally Section 8 shows the conclusion and provides suggestions for future work.

4.2 Related work

On their original proposition Fowler and Beck (1999) provides 22 heuristics for
the identification and refactoring of code smells, which would become the most common
conceptualization of software design that may hinder the development and maintenance
of the system Marinescu (2004). The code smells identification should be subjective to
the developer’s interpretation Fowler and Beck (1999). But Marinescu (2004) counter
arguments that manually identifying the code smells is a time consuming, non-repeatable
and non scalable task, proposing that automated identification may improve the task
based on code metrics. Independently on the detection approach used to identify the code
smells the human interpretation is still necessary Fontana et al. (2016), since code smells
are hints for a design problem but do not necessarily represent a design problem Fownler
(2016). So the manual identification is still the best approach, as it eliminates uncertainties
of the process, however, due to its human-centric aspect, it is time-consuming and error-
prone, so it should be helped by automated approaches Counsell et al. (2010).

Yamashita and Moonen (2013) argues yet that the automated approaches are

4.2. Related work 57

important since it is common for the developers to be unaware of their presence in the
code. Shatnawi and Li (2008) shows a relationship between code metrics and qualitative
metrics such as code smell and class error tendencies. Khomh et al. (2009a) also states
that code smells have a negative impact on classes maintainability aspects. Jaafar et al.
(2016) demonstrates that classes related to anti-patterns exhibit more defects than those
which are correlated to design patterns.

Even though there is empirical support for code-based metrics Ferme et al. (2013)
found that these approaches rely on fixed thresholds to determine the presence or absence
of code smells, but those thresholds are usually empirical and unreliable, hurting the
performance of the algorithms. Machine learning can be used to reduce this uncertainty,
but are dependant on large amounts of human-annotated data and their quality Rasool
and Arshad (2015). But in practice, until this moment it is unclear which presents the best
performance, but what is certain about the Machine Learning approach that it reduces
the cognitive load required from the engineers, since it does not require them to define
the roles and thresholds Fontana et al. (2016).

One of the first works using Machine Learning techniques were developed by
Kreimer (2005) which uses Decision Trees algorithms to identify Large Classes and Long
Methods smells, Khomh et al. (2009b), Kosker et al. (2009) and Khomh et al. (2011)
relies on Bayesian approaches to identify anti-patterns, but while the first one uses a
Bayesian Network approach, the second one uses a Naive Bayes and the last one uses
"Goal, Question and Metric" in combination with the Bayesian approach. Fontana et al.
(2013) uses the following WEKA algorithms: Support Vector Machines (SMO, LibSVM),
Decision Trees (J48), Random Forest, Naıve Bayes and JRip, for the identification of Long
Method, Large Class and Feature Envy extracted from projects from Qualitas Corpus,
this work is further evolved by Fontana et al. (2016) where it uses 16 different WEKA
algorithms and also adds variations of these algorithms with boosting techniques. Fu and
Shen (2015) and Palomba et al. (2015a) uses Association Rules approaches based on the
code repository history, while the first focuses on Speculative Generality and Divergent
Change smells the second focuses on Divergent Change, Feature Envy, Parallel Inheritance
and Shotgun Surgery.

All these works contributed for the discussion and for the development of this
topic, but a mapping study that was conducted previously and that is still under re-
view under International Journal of Software Engineering and Knowledge Engineering
(IJSEKE) one of the hardships found in the code smells mapping study is that there is
a lack of comparable results, each study uses a different dataset with different settings,
what reduces the reliability of the results. Other factor, is that only a small part of the
code, the labeled part, is used for training and testing the model, the bigger part that is
unlabeled is simply discarded. Even though it is a common practice, it may be subject

58 Chapter 4. Results

to a selection bias, since developers may labels easier detectable smells. Our work differs
from them by tackling these two detected gaps, we use Landfill Palomba et al. (2015b), an
open dataset that contains 8 annotated different kinds of smells and can be easily reused
by another experiments and both the labeled and the unlabeled code will be used for the
model development.

4.3 Background
The Landfill dataset contains smells annotations for 8 different types of smell Palomba

et al. (2015b), but since this work is focused on objected-oriented smells we discard two
test-related smells: Eager Test and General Fixture. So we will focus on the remaining
smells: Divergent Change, Feature Envy, Large Class, Long Method, Parallel Inheritance
and Shotgun Surgery and the machine learning techniques proposed for each of them.

4.3.1 Code smells

4.3.1.1 Code Smells definition

Code smells represents design choices that may lead to a future degradation on
maintainability, understand-ability and changeability of a given part of the code Fowler
and Beck (1999), but even though smells are hints that the code may present a design
problem it does not necessarily indicates one Fownler (2016). Below the definition of each
of the selected code smells are described, we will use Mantyla et al. (2003) taxonomy to
classify each of them, but will also classify them by the code entity they affect and the
quality aspects they affect as defined by Marinescu (2005):

Divergent Change
The divergent change smells represent classes that change together whenever another
class changes, classes which have this smell usually demonstrates a high coupling,
hurting the low coupling high cohesion design guideline. It is classified as a change
preventer class and affects inter-class interactions.

Feature Envy
A method that is more interested in other properties of the classes than in the ones
from its own class. This kind of smell affects the coupling, cohesion and encapsulation
design aspects of the system, representing a problem in the abstract design of the
system. It is classified as coupler smell and affects method/property entities.

Large Class
A class that tries to do a load of things, having plenty of instance variables or
methods. It is similar to the Blob/God class anti-pattern Brown et al. (1998). A

4.3. Background 59

class with this smell tends to present coupling, cohesion and complexity problem,
affecting the maintainability and understand-ability of the class. It is classified as a
bloatter smell and affects class entities.

Long Method
A method that is so long that it is hard to understand, change or extend. It also
increases the complexibility of the system. It is classified as a bloatter smell that
affects method level entities.

Parallel Inheritance Hierarchies
A situation where two parallel class hierarchies exist and are related. It’s quality
aspects were not defined on Marinescu (2005), but by it’s nature it affects the
abstraction design of the system. It is classified as an object-orientation abuser and
affects inter-class inheritance relationships.

Shotgun Surgery
The shotgun surgery smell exists when changing a given class requires a consequent
change on other classes that depends on it, classes with this smell usually has a low
cohesion, hurting the low coupling high cohesion best practice. It is classified as a
change preventer class and affects inter-class interactions.

4.3.2 Machine Learning

Machine learning techniques can be categorized in three ways: supervised, unsu-
pervised and semi-supervised, all of them take features as input, these features used may
be categorized as continuous, categorical or binary, depending on their nature Kotsiantis
(2007). If instances are given with known labels (the human annotated correct output)
then the learning is called supervised, otherwise, when the instances are unlabeled, it is
unsupervised learning Jain et al. (1999). There is also a hybrid approach, which is the
semi-supervised learning that uses both labeled and unlabeled data to perform an oth-
erwise supervised learning or unsupervised learning task Zhu and Goldberg (2009). This
work will focus on the supervised techniques, since we use labeled smells data and most
of the experiments use this approach Fernandes et al. (2016); Kotsiantis (2007). During
this section we will give a brief explanation of the techniques used on the experiment.

∙ Association Rules: Association rules is a rules-based technique that aims at iden-
tifying relationship between variables that exists in the dataset.

∙ Decision Trees: Decision Trees classify instances by sorting them based on feature
values and splitting them into branches, each branch represents the value thresholds
the contained nodes can assume and each node represents a feature. Instances are

60 Chapter 4. Results

classified starting at the root node and then sorted based on the features value and
.

∙ Random Forest: Random Forest is a tree-based ensemble technique, which uses
a bagging of trees models, built using only a subset of the features, the average of
those trees is taken to calculate for the features prediction.

∙ Logistic Regression: Fits a sigmoid function in a linear regression model for binary
classification, the function determines the classification probability of each instance
and based on a probability threshold determines if it is classified as positive or
negative.

∙ Neural Networks: A multi-layer neural network consists of large number of units
(neurons) joined together in a pattern of connections, each connection has an weight
that is established by the model, and each node contains an activation function that
determines the node value. It usually has one output node for each class that are
usually defined by a sigmoid function.

∙ Naive Bayes: Naive Bayes uses Bayesian Statistics to establish the probability
between one unobserved node and a chain of children observed nodes. It assumes
an independent relationship between child nodes and their parent.

∙ Nearest Neighbors: Nearest Neighbors, also known as k-nearest neighbors is a
lazy-learning algorithms classifying algorithm that classifies the items based on their
position and distance in a hyper-plane.

∙ Boosting Techniques: Boosting techniques are classifiers which uses the combi-
nation of a set weak learners to build a stronger one, with lower-bias and variance.
Those classifiers usually perform well under scenarios where there isn’t enough data
to train a more complex classifier such as a deep neural network. Some of the most
prominent boosting techniques currently are XGBoost Chen and Guestrin (2016),
LightGBM Ke et al. (2017) and CatBoost Dorogush et al. (2017) which were recently
developed and are known to be used by the winners of multiple Kaggle contexts.

4.4 Experiment Setup
The study performed an empirical experiment on the usage of machine learning

techniques for code smells identification. Empirical Experiments uses empirical studies to
build and produce a theory or a model and demonstrate that it is usable from a practical
perspective Zelkowitz and Wallace (1998). In order to compare the performance of the
machine learning techniques, an empirical experimental will be developed. The experiment
will be conducted in a controlled environment, using the same database, that will be split

4.4. Experiment Setup 61

in: training and testing set, these sets will be the same for the different models. So that the
only variable that will be changed during the experiment will be the will be the machine
learning techniques. Adjustments, such as feature-engineering and extraction may have
to be done in the sets to be usable with the diverse techniques, but they shall be done in
a way that do not affect the outcome of the project.

4.4.1 Experiment Design

To help in the definition of the scope we defined a goal, according to the baselines
defined by Wohlin et al. (2012): Analyze the Machine Learning Techniques for Code Smells
identification for the purpose of evaluation with respect to their effectiveness and efficiency
from the point of view of a researcher in the context of a standardized environment that
can be replicated and compared by future experiments.

4.4.2 The smells dataset

For the purpose of replicability, we used a public dataset named landfill, since
it constitutes the largest collection of manually validated smells publicly available as of
today Palomba et al. (2015b). It is composed of 2 databases, each contains around 20
different projects with annotated smells, summing up to 1770 annotated smells spread
across 8 different types. Since this work is focused on objected-oriented smells we discard
two test-related smells: Eager Test and General Fixture. What leaves 6 smells remaining:
Divergent Change, Feature Envy, Large Class, Long Method, Parallel Inheritance and
Shotgun Surgery.

We downloaded the project snapshot for each project contained in the Dataset and
used the Metrics Reloaded Leijdekkers (2017) Idea IntelliJ plugin to download the Metrics
required for each technique, for the metrics that were not supported by the plugin, we
used the tool used in the given experiment. For the Association Rules smells, we used
the change history provided by the same authors of the Landfill Dataset that used them
on the history mining study Palomba et al. (2015a), and extracted the Association Rules
from them. As the experiment was setup to be a Positive-Unlabeled problem, we merged
the whole metrics data with the annotated smell, the ones that matched were classified as
Positive, while the remaining metrics were classified as Unlabeled. It is important to call-
out that we weren’t able to match all the corpus smells with it’s metrics counterpart, the
main reason for that was that some annotations did not follow the same name convention,
there were also some duplicated annotations for the same smell, which were removed to
leave just unique annotations.

62 Chapter 4. Results

4.4.3 Code Smells detection strategy

A comprehensive number of strategies for the detection of code smells on the
source code is present on the literature, as the focus of this work is on Machine Learning
techniques, we will focus on the best strategies found on literature using Machine Learning
techniques for each of the covered smells.

Divergent Change and Shotgun Surgery
The top performing article for this smell uses the change history in the code repos-
itory to identify how often the classes changes together with others. An association
rules (Apriori) technique was used to identify the support, confidence and lift in the
classes that presents changes on the same commits as described on the experiment
done by Palomba et al. (2015a).

Feature Envy and Long Method
The article which presented the best performance in the literature Fontana et al.
(2013) uses the following IPlasma Metrics Marinescu et al. (2005): Size metrics –
measure the size of the analyzed entity; Complexity metrics – measure the complex-
ity of the analyzed entity; Coupling metrics – measure the data coupling between
entities; Cohesion metrics – measure the cohesion of classes and Fluid tools met-
rics Nongpong (2012): Depth of Inheritance Tree (DIT); Number of Children (NOC);
Weighted Methods per Class (WMC); Afferent Coupling (Ca); Efferent Coupling
(Ce); Lack of Cohesion in Methods (LCOM*);McCabe’s Cyclomatic Complexit.

Large Class
The dominant article on this subject in the literature Fontana et al. (2013) also uses
IPlasma Metrics such as: Size metrics – measure the size of the analyzed entity;
Complexity metrics – measure the complexity of the analyzed entity ; Coupling
metrics – measure the data coupling between entities; Cohesion metrics – measure
the cohesion of classes but adds some PMD Rules Pmd (2013).

Parallel Inheritance Hierarchies
Similar to the Divergent Change and Shotgun Surgery detection, this smell is also
detected using the code repository change history and uses association rules (Apri-
ori) to identify the support, confidence and lift. But instead of checking for classes
that presents changes in the same commits it checks for super-classes that changes
together when a subclass is added. For the other techniques, we kept the association
rules variables (confidence, support and lift) as features, since they provide valuable
information, but instead of using a hard threshold we fit them to the model.

4.4. Experiment Setup 63

4.4.4 Evaluated models

Based on the smells supported by the Dataset we selected the best performing
technique for each of them based on the literature review submitted ot IJSEKE, the
smells and the respective associated technique can be seem on the table 7.

Smell Techniques Reference
Divergent Change Association Rules Palomba et al. (2015a)

Feature Envy Decision Tree, Random Forest and Naive Bayes Fontana et al. (2013)
Large Class Decision Tree, Random Forest and Naive Bayes Fontana et al. (2013)

Long Method Decision Tree, Random Forest and Naive Bayes Fontana et al. (2013)
Parallel Inheritance Association Rules Palomba et al. (2015a)

Shotgun Surgery Association Rules Palomba et al. (2015a)

Table 7 – Best performing technique for each smell

For each of the smells we also developed models that were recommended by the
literature for Positive-Unlabeled problems, such as: One class classifiers (Such as One class
SVM or Local Outlier Detection), Boosting (Random Forest, XGBBoost, LightGBM,
CatBoost) and Ensemble (multiple ML techniques with a soft voting classifier) Khan
and Madden (2014), a weight adjustment proposed by Elkan and Noto (2008) and a
under/oversampling technique. Since Random Forest was recommended by the article and
is also a Boosting model, it fits into two categories, so when it appears as recommended by
the Article we will classify it as Article recommendation instead of as a boosting model.

4.4.5 Assessing the models

For the models assessing we used the precision, recall and f-measure metrics Powers
(2011), which are commonly used for classifications with unbalanced positive/negative
rate. Once the unlabeled sample contains both positive and negative examples, we used
the default contingency table for the labeled data, while we used an adapted contingency
table for the unlabeled data as proposed by Claesen et al. (2015) as shown below where 𝛽

is the estimated number of smells in the unlabeled data, 𝑓𝑝𝑟 stands for the false positive
rate, 𝑟 for recall and 𝑈 for the unlabeled samples:

∙ True positive (Unlabeled): 𝛽 * 𝑈 * 𝑟

∙ True negative (Unlabeled): (1 − 𝛽) * 𝑈 * (1 − 𝑓𝑝𝑟)

∙ False positive (Unlabeled): (1 − 𝛽) * 𝑈 * 𝑓𝑝𝑟

∙ False negative (Unlabeled): 𝛽 * 𝑈 * (1 − 𝑟)

64 Chapter 4. Results

4.4.6 Research questions

In this subsection we describe how each of the research questions were addressed
by the experiment

∙ How does the baseline models perform on the selected dataset? To an-
swer this question, the original experiments were replicated in our dataset, but
instead of using them for a Positive/Negative learning problem, we used them on
a Positive/Unlabeled problem. We also tested them using some imbalanced data
treatment, such as the combination of oversampling and under-sampling techniques
and the class weighting adjustment proposed by Elkan and Noto (2008). We took
the precision, recall and f-measure with the contingency table proposed by Claesen
et al. (2015) also considering a confidence-interval for the smell-proportion.

∙ How the techniques recommended for positive/unlabeled settings per-
form when compared to the recommended techniques? For this question
algorithms recommended for positive/unlabeled learning problems were applied for
each smell, using the same setup and measurement as used for the question above.
We then compared the results with the best performing code smell identification
techniques.

4.5 Results

In this Section we present the results of the empirical experiment. Firstly, we will
demonstrate some descriptive statistics of the used dataset, after that we will show the
result of the literature selected models and finally we will show the results of techniques
recommended for Positive-Unlabeled learning and compare with the baseline results.

4.5.1 Overview

To understand how the smells are distributed the dataset, we present a descrip-
tive statistics on table 8. It is possible to notice in this table that the dataset is highly
unbalanced, the smells represents less than 1% of the set for most of the smells. The
smell ration also variate a lot from project to projects, as demonstrated by the Deviation,
the % Deviation for all the smells is above 100%. This difference may occur due to the
differences in the quality of the smell, but also due to the project size or the developers
knowledge and experience in the given project Marinescu (2004).

In order to calculate a more precise f-measure considering the unknown values in
the unlabeled set we have to define the Beta value. It is important to have a well defined 𝛽

to avoid misleading results Claesen et al. (2015). Since we don’t have any prior empirical

4.5. Results 65

Table 8 – Basic descriptive stats from the smells

Smell Projects Smells By
Project

Unlabeled
By
Project

Ratio By
Project

Deviation % Devia-
tion

Large Class 36 6.86 989.22 0.0120 0.0218 182%
Long Method 19 21.58 753.26 0.0270 0.0361 134%
Feature Envy 27 4.67 2,659.96 0.0059 0.0089 151%
Parallel Inheri-
tance

7 2.71 645.00 0.0173 0.0306 177%

Divergent Change 9 1.11 1,203.78 0.0024 0.0024 102%
Shotgun Surgery 5 2.80 1,498.80 0.0036 0.0056 156%

study which quantifies the average percent of smell sin the population, we will use the
number of labeled and unlabeled features for each kind of smells, and the consequent
average smell percent considering the percentage of each project and use it as 𝛽, as well
as its 95% confidence interval that was used to calculate the f-measure CI. It is important
to make clear that the ratio is just an approximation since the ratio of smells in a given
projects can greatly vary from project to project as shown in 8. The ratio used for each
kind of smell can be found on the table 9.

Table 9 – Smell ratio

Smell Positive Unlabeled Ratio Projects Average
Ratio (𝛽)

Confidence Interval

Long Method 410 14312 0.0278 0.0270 [0.0092 , 0.0449]
Feature Envy 126 71819 0.0018 0.0023 [0.0059 , 0.0095]
Large Class 247 35612 0.0069 0.0045 [0.0120 , 0.0195]
Shotgun
Surgery

14 7494 0.0019 0.0036 [0.0000 , 0.0113]

Divergent
Change

10 10834 0.0009 0.0024 [0.0004 , 0.0043]

Parallel
Inheritance

19 4515 0.0042 0.0173 [0.0000 , 0.0479]

4.5.2 How does the baseline models perform on the selected dataset?

We replicated the best performing studies found in the literature for each smell in
the dataset we prepared for this experiment, the results of the replicated results were then
compared to the results reported on the original experiment as can be seem on figure 15.
There is a noticeable difference between the original results and the replicated techniques
for every smell. The model which performed the best in our replicated experiment was
the Decision Tree used for the Long Method detection, but it still performed 34% worst
than the original experiment, while most were outperformed by more than 50% and some
performed even 86% below the original experiments.

66 Chapter 4. Results

Figure 15 – Original x Current Experiment (F-Measure)

To help understand how much the performance difference is impacted by the diver-
gent smell ratios, we performed an experiment using a Near Miss undersampling technique
to emulate a 1/3 smell ratio in the dataset, the results can be seem on figure 16. Even
though some smells still perform worst then the baseline, it is possible to notice that the
results are more similar to it, the biggest variation occurred for shotgun surgery with
11%.

Figure 16 – Original x Current Experiment (F-Measure) with 1/3 smell ratio

4.5.3 How the techniques recommended for positive/unlabeled settings per-
form when compared to the recommended techniques?

For each of the studied smells we tested a set of approaches for highly unbal-
anced data: One class classifiers (Such as One class SVM or Local Outlier Detection),
Boosting (Random Forest, XGBBoost, LightGBM, CatBoost) and Ensemble (multiple
ML techniques with a soft voting classifier). We also tried them with and without un-
der/oversampling combination technique and the Positive/Unlabeled weight adjustment.

4.5. Results 67

For the charts below we selected only the best performing techniques of each category,
the whole experiment result can be found in Appendix B.

Regarding the Large Class smell, the best performing technique was the XGBoost,
it outperformed the recommended technique by 0.17 (40%), it presented a better re-
call than the other method without losing too much on the precision. The usage of un-
der/oversampling technique also improved the recommended technique by 0.13 (31%), it
had a small loss on the precision, but it was compensated by a huge gain on the recall,
while the Ensemble model only provided a small gain of 0.02 (5%), with a much better
precision than the baseline, but a slightly worst recall. The isolation forest classifier per-
formed below the baseline by 0.25 (59%), with an extreme precision but a very low recall.
The chart with the Large Class results can be seem on figure 17

Figure 17 – Large class results

The long method smell presented a very small variance on the results for most
of the techniques. The baseline technique adjusted with a PU weighting was the best
performing one with 0.009 (1.3%) above the baseline, it presented a very similar precision
and recall balance. It was followed by the CatBoost, which performed only 0.004 (0.6%)
above the baseline, it had a higher precision than the baseline but was penalized on the
recall. The ensemble model in other hand presented a slightly worst result, performing
0.015 below the baseline (2.2%), with almost the same recall but a worst precision. Again,
the worst model goes for the Isolation Forest, which performed 0.26(39%) below the
baseline, with an extreme precision but a small recall. As shown in the figure 18

The feature envy also had just a small variance when compared to the Article
recommended technique, the best performing technique was the random forest recom-
mended by the baseline but using PU weighting adjustments and over/under sampling
techniques which performed better than the baseline by 0.005 (1%) with a better recall

68 Chapter 4. Results

Figure 18 – Long method results

but worst precision than it, the second best performance, which was CatBoost performed
just slightly better than the baseline, with a better recall and worst precision as well it
score 0.0002(0,045%) below it. The Ensemble model didn’t perform well, scoring 0.021
(4%) below the baseline.

Figure 19 – Feature Envy results

For the next three smells: Divergent Change, Shotgun Surgery and Parallel Inheri-
tance, given that in the original experiment they use a hard threshold to define the smell,
for the calculation of the adjusted model with PU weighting and under/oversampling
techniques we used these technique for recalculating the threshold.

For divergent change smell the Ensemble model demonstrated the best perfor-

4.5. Results 69

mance with a score 0.06 (13%) above the Baseline. It presented a better precision, but
a smaller recall. The adjusted model did not have any effect on the results. While the
Boosting technique performed 0.034 (7%) worst with a slightly better precision but a
much worst recall.

Figure 20 – Divergent Change results

The shotgun surgery best performing model was also the Ensemble model, which
score 0.3 (100%) above the baseline, with a loss on recall but a huge gain on precision.
It was followed by CatBoost, with a gain of 0.29 (48.5%) with a worst recall but a much
better precision than the baseline. The adjusted model only performed slightly better
than the original model, both had a big recall but a small precision.

Figure 21 – Shotgun Surgery results

70 Chapter 4. Results

When it comes to Parallel Inheritance the best performing technique was also the
Ensemble model, which outperformed the original technique by 0.44 (304%), presenting a
better precision and recall. It was followed by the CatBoost, which performed 0.37 (255%)
better than the baseline, it had a huge precision, but a recall smaller than the Ensemble.
On this smell, the Adjusted Article also did not demonstrated any improvement when
compared to the baseline.

Figure 22 – Parallel Inheritance results

For all the smells the One Class Classification Techniques performed poorly, even
though it achieved a high recall it wasn’t able to obtain a relevant precision, since it
searches for outliers it is probable that the algorithms could not find a clear boundary
between the smells and the unlabeled set, since the difference in the metrics is subtle,
bringing the results to a lower score.

The Positive/Unlabeled weighting adjustment helped improving the score in 1/2
of the highest scoring techniques, while the under/oversampling technique helped it in
1/3 of the top techniques. They also were able to improve the baseline techniques per-
formance in 4/6 of the techniques, on the other 2 it performed the same. From these
4 that achieved a better performance, 2 used a combination of the weight adjustment
and under/oversampling, 1 used only the weight adjustment and 1 used only the un-
der/oversampling.

4.6 Discussion

This studied tried to create a replicable experiment recreating the best performing
machine learning techniques learning applied for code smells identification found in the

4.6. Discussion 71

literature machine. The study also added some techniques that are recommended for
highly imbalanced datasets, that characterizes the setup of this experiment.

All the replicated techniques performed worst on this experiment than on the
original experiment they were performed. We believe that the main reason for that is the
different ratio of smells in the code. While the original experiments used Positive/Negative
annotated code in a ration that varied between 1/3 of smells and 1/2 Fontana et al. (2013);
Palomba et al. (2015a), ours used a Positive/Unlabeled approach, drastically reducing
the rate which varied between 0.3% and 2% depending on the smell. This setup makes
it harder to achieve a high precision without hurting the recall and vice-versa, while the
harmonic mean (F-Measure) penalizes lower values for any of the metrics challenging the
models to achieve a good balance between both of them.

Even though none of the models performed as well on the replicated experiment
as they did on the original experiment, the Decision Tree used for the Long Method
was the technique that achieved the highest result among the replicated techniques. One
possible reason for that is that the features that characterizes Long Method smells are
cleared defined them the features used for the other smells. The higher smell ratio may
also help it’s performance, but we believe that this factor doe not have as much influence
as the features, given that the Parallel Inheritance smell has the second bigger ratio but
was one of the worst performing. We also found that the smells which relied heavily on
metrics performed better on the replicated experiment than the ones which relied on the
change history, this may happen due to the hard thresholds used on the Association Rules
extracted for the change history, which made the original experiments less flexible.

The original models also took advantage of the weight adjustment and under/oversampling
techniques, 4 out of the 6 replicated experiments achieved betters results by using these
techniques. The smells that took the most advantage on it were the ones that used more
code metrics, that achieved improvements ranging from 1% improvement on Long Method
to 31% for Large Class. From the models that used the change history and association
rules only Shotgun Surgery had any improvement by using it, but with only a tiny con-
tribution.

The model which performed the best for most of the smells was the Soft Voting
Ensemble model, it performed particularly well for the relationship based smells: Divergent
Change, Shotgun Surgery and Parallel Inheritance, that relied more in the change history
and association rules parameters. They were also the smells with the least amount of
annotated smell. The random forest that was recommended as baseline for Feature Envy
and Long Method, and was improved with weight adjustment for both of them and
under/oversampling for the first, also were the best performers for 2 smells. Since Random
Forest can also be considered a boosting technique, we can conclude that the Boosting
techniques also were the top performers for 3 out of the 6 smells, mainly those that rely

72 Chapter 4. Results

heavily on metrics.

Most of the best performing technique also found the weight adjustments and
SmoteTomek techniques to be useful for improving their performance. Only two of the
best performing techniques didn’t use it and both of them were Ensemble models. The
one class classification techniques were not able to reach any significant performance for
any of the smells, even though it was able to reach high recall rates, it failed to reach a
good recall. Since it relies heavily on outlier detection, it’s poor performance demonstrates
that the boundaries between what is and what is not a smell can’t be clearly defined only
by the used features, it may also rely on some adjustable probability.

4.7 Threats to validity

We have selected the best performing techniques based on a Mapping Study, but
since the studied techniques used different datasets and even the studies that use the
same project use different annotations to train the data, decreasing the reliability of the
comparisons of performance. This threat is increased by publication bias as the researches
tend to release only positive results, avoiding the negative ones, and also tend to show
that their results outperform the others.

Another possible threat is that some snapshots used by the dataset does not exist
anymore, in order to reduce this risk we used snapshots taken around the same time of
the ones proposed in the original dataset and manually re-validate it. There were are also
some annotations that failed to merge with our dataset due to non-standard nomenclature,
what can reduce the annotation size and consequently impact the performance.

Finally, we could not find any empirical study to define the distribution of smells
per project, hence the 𝛽 value used to build the contingency table had to be build based
on the dataset distribution per project. In order to mitigate this risk we also developed
a confidence interval for the beta value and calculated the resulting values based on this
confidence interval, which can be found in Appendix B.

4.8 Conclusions

This study replicated the best performing machine learning techniques for code
smell identification to create a bench-marking in a standardized annotated dataset for
the evaluation and posterior comparison of the techniques. The code smell distribution
differed from the original experiment, the rates used by the original setup varied between
1/3 and 1/2 smells per non smells, ours vary between 0.3% to 2%, we kept the ratio found
in the annotated dataset, since it is closer real life scenarios.

4.8. Conclusions 73

We found the techniques did not perform as well as they did on the original
experiment. But the code metrics related smells were able to take advantage of weight
adjustments and under/oversampling to improve their performance. Using techniques that
are best fit for this kind of imbalanced data can greatly improve the existing techniques
under these circumstances. Among the studied smells we found that Ensemble models
were best fit for the smells that were based on relationships between methods and classes,
while the Boosting techniques performed better for smells that are related to the structure
of classes and methods.

We believe that the smells identification techniques could benefit from using a real-
istic ratio of smell since it would reduce the potential number of false positives, improving
the developer’s trust in the techniques and reducing the amount of work needed to track
the existing smells. Future experiments can also benefit from the developed experiment
to run benchmarks where they can check their techniques performance against proven
techniques without needing manual labor to annotate smells.

Although we were able to improve the results of the replicated techniques the
overall results still could not reach a satisfactory results. Future experiments could focus
on the improvement of the results for the existing setup. The used dataset, even thought is
the most complete that could be found in literature, still lack many of the 22 smells defined
by Fowler and Beck (1999), future experiments could extend this study by improving the
Palomba et al. (2015b) work and adding new smells annotations to it, and using these
new smells to create new bench-markings.

75

5 Conclusion

During this study, we mapped the best performing techniques that we could find
in literature. Even though many of the mapped studies reported the results in terms of
precision, recall and f-measure, they are still hard to compare given that they do not
use the same dataset, and when they do they do not use the same annotated smells.
So we replicated them on a standardized dataset aiming to develop a ML techniques for
code smell identification golden standard. Since we found that the existing techniques
considered an unreal smell ratio in the projects we tried to incorporate this element into
our model by using a Positive (the landfill annotated smells) / Unlabeled (the rest of the
code) setup.

Using a smell ratio of 1/3 that is similar to the one used in the original datasets,
we were able to perform close to the original results, with a maximum variance of 12% for
the replicated techniques. But when the same techniques were replicated using the whole
code, they performed worst, some performed even 300% below the original results. We
used some techniques recommended for highly imbalanced datasets in order to improve
the performance on this scenario, these techniques brought significant improvement over
the original techniques. Regarding the studied smells we found that Ensemble models
were best fit for the smells that were based on relationships between methods and classes,
while the Boosting techniques performed better for smells that are related to the structure
of classes and methods.

We believe that the results from this work can help the evolution of the subject
by providing a way baseline where future works can be compared against. We also believe
that the smells identification techniques could greatly benefit from using a more realistic
ratio of smell since it would reduce the potential number of false positives, improving the
developer’s trust in the techniques and reducing the amount of work needed to track the
existing smells.

Even though we were able to improve the results of the replicated techniques
under the highly imbalanced setup the results still have plenty room for improvement,
hence future experiments could focus on the improvement of the results for this setup.
The used dataset, even thought is the most complete in literature, still lack many of the 22
smells defined by Fowler and Beck (1999), future experiments could extend this study by
improving the Palomba et al. (2015b) work and improving the annotations and creating
new benchmarks.

77

Bibliography

Abran, A. and Nguyenkim, H. (1993). Measurement of the maintenance process from a
demand based perspective. Journal of Software Maintenance: Research and Practice,
5(2):63–90.

Aggarwal, K. K., Singh, Y., and Chhabra, J. K. (2002). An integrated measure of soft-
ware maintainability. In Reliability and Maintainability Symposium, 2002. Proceedings.
Annual, pages 235–241, Seattle, WA, USA. IEEE.

Akay, F. M. (2009). Support vector machines combined with feature selection for breast
cancer diagnosis. Expert Systems with Applications, 36(2):3240–3247.

Al Dallal, J. (2015). Identifying refactoring opportunities in object-oriented code: A
systematic literature review. Information and Software Technology, 58:231–249.

Basili, V. R. (2007). The role of controlled experiments in software engineering research.
In Empirical Software Engineering Issues. Critical Assessment and Future Directions,
pages 33–37. Springer.

Bavota, G., De Lucia, A., and Oliveto, R. (2011). Identifying Extract Class refactoring
opportunities using structural and semantic cohesion measures. Journal of Systems and
Software, 84(3):397–414.

Bennett, K. H. and Rajlich, V. T. V. T. (2000). Software maintenance and evolution:
a roadmap. In Proceedings of the Conference on the Future of Software Engineering,
volume 225, pages 73 – 87. ACM.

Bernardi, M. L., Cimitile, M., and Di Lucca, G. (2016). Mining static and dynamic cross-
cutting concerns: a role-based approach. Journal of Software: Evolution and Process,
28(5):306–339.

Brown, W. J., Malveau, R. C., Mowbray, T. J., and Wiley, J. (1998). AntiPatterns:
Refactoring Software , Architectures, and Projects in Crisis, volume 3. John Wiley &
Sons, Inc.

Bryton, S. and Abreu, F. B. (2009). Strengthening refactoring: Towards software evolu-
tion with quantitative and experimental grounds. In 4th International Conference on
Software Engineering Advances, ICSEA 2009, pages 570–575, Porto, Portugal. IEEE.

Bryton, S., Brito E Abreu, F., and Monteiro, M. (2010). Reducing subjectivity in code
smells detection: Experimenting with the Long Method. In Proceedings - 7th Inter-

78 Bibliography

national Conference on the Quality of Information and Communications Technology,
QUATIC 2010, 7, pages 337–342, Porto, Portugal. IEEE.

Chakraborty, C. and Joseph, A. (2017). Machine learning at central banks. Bank of
England working papers 674, Bank of England.

Chatzigeorgiou, A. and Manakos, A. (2010). Investigating the evolution of bad smells
in object-oriented code. In 2010 Seventh International Conference on the Quality of
Information and Communications Technology, pages 106–115.

Chatzigeorgiou, A. and Manakos, A. (2014). Investigating the evolution of code smells in
object-oriented systems. Innovations in Systems and Software Engineering, 10(1):3–18.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794. ACM.

Claesen, M., Davis, J., De Smet, F., and De Moor, B. (2015). Assessing binary classifiers
using only positive and unlabeled data. ArXiv e-prints, 1.

Counsell, S., Hierons, R. M., Hamza, H., Black, S., and Durrand, M. (2010). Is a strategy
for code smell assessment long overdue? In Proceedings of the 2010 ICSE Workshop on
Emerging Trends in Software Metrics, pages 32–38, Cape Town, South Africa. ACM.

Cowell, R. G., Verrall, R. J., and Yoon, Y. K. (2007). Modelling Operational Risk With
Bayesian Networks. The Journal of Risk and Insurance, 74(4):795–827.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods
approaches. Sage publications.

Criteo (2015). E-Commerce Industry Outlook 2015.

Dalkey, N. and Helmer, O. (1963). An experimental application of the delphi method to
the use of experts. Management science, 9(3):458–467.

Doostmohammadi, A., Amjady, N., and Zareipour, H. (2017). Day-ahead Financial
Loss/Gain Modeling and Prediction for a Generation Company. IEEE Transactions
on Power Systems, PP(99):1–1.

Dorogush, A. V., Ershov, V., and Gulin, A. (2017). Catboost: gradient boosting with
categorical features support.

Dybå, T. and Dingsøyr, T. (2008). Strength of evidence in systematic reviews in software
engineering. In Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, pages 178–187. ACM.

Bibliography 79

Easterbrook, S. M., Singer, J., Storey, M., and Damian, D. (2007). Selecting empirical
methods for Software Engineering research. In Guide to Advanced Empirical Software
Engineering, pages 285–311. Springer.

Eichberg, M., Hermann, B., Mezini, M., and Glanz, L. (2015). Hidden Truths in Dead
Software Paths. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 474–484, New York, NY, USA. ACM.

Ekbia, H. R. (2010). Fifty Years of Research in Artificial Intelligence. Annual review of
information science and technology, 44(1):201–242.

Elkan, C. and Noto, K. (2008). Learning classifiers from only positive and unlabeled
data. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 213–220. ACM.

Fenton, N. and Neil, M. (2007). Managing risk in the modern world. Application of
Bayesian Networks, 1(1):1–28.

Ferme, V., Marino, A., and Fontana, F. A. (2013). Is it a Real Code Smell to be Removed
or not? In International Workshop on Refactoring & Testing (RefTest) 2013, Wien,
Austria.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. (2016). A review-based
comparative study of bad smell detection tools. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering - EASE ’16, pages
1–12, Limerick, Ireland. ACM.

Fittkau, F. (2011). Controlled experiments in software engineering. Working paper, Kiel
University, Kiel, Germany.

Fokaefs, M., Tsantalis, N., and Chatzigeorgiou, A. (2007). Jdeodorant: Identification and
removal of feature envy bad smells. In Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on, pages 519–520, Paris, France. IEEE.

Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. (2012). Identification and
application of Extract Class refactorings in object-oriented systems. Journal of Systems
and Software, 85(10):2241–2260.

Fontana, F., Mäntylä, M. V., Zanoni, M., and Marino, A. (2016). Comparing and ex-
perimenting machine learning techniques for code smell detection. Empirical Software
Engineering, 21(3):1143–1191.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Automatic detection of bad smells
in code: An experimental assessment. Journal of Object Technology, 11(2):1–5.

80 Bibliography

Fontana, F. A., Ferme, V., Zanoni, M., and Yamashita, A. (2015). Automatic metric
thresholds derivation for code smell detection. In International Workshop on Emerging
Trends in Software Metrics, WETSoM, volume 2015-August, pages 44–53, Piscataway,
NJ, USA. IEEE Press.

Fontana, F. A., Zanoni, M., Marino, A., and Mäntylä, M. V. (2013). Code smell detection:
Towards a machine learning-based approach. In IEEE International Conference on
Software Maintenance, ICSM, pages 396–399, Eindhoven, The Netherlands.

Fowler, M. and Beck, K. (1999). Refactoring: improving the design of existing code.
Addison-Wesley Professional.

Fownler, M. (2016). Codesmell. https://martinfowler.com/bliki/CodeSmell.html.
(Accessed on 01/14/2018).

Fu, S. and Shen, B. (2015). Code Bad Smell Detection through Evolutionary Data Min-
ing. In International Symposium on Empirical Software Engineering and Measurement,
pages 41–49.

Ghannem, A., El Boussaidi, G., and Kessentini, M. (2014). Model refactoring using exam-
ples: A search-based approach. Journal of Software: Evolution and Process, 26(7):692–
713.

Gîrba, T., Ducasse, S., Kuhn, A., Marinescu, R., and Daniel, R. (2007). Using concept
analysis to detect co-change patterns. In Ninth international workshop on Principles
of software evolution: in conjunction with the 6th ESEC/FSE joint meeting, volume 6,
page 89, New York, NY, USA. ACM.

Global Web Index (2016). Digital consumers own 3.64 connected devices. Global Web
Index.

Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learning.
Machine Learning, 3(2):95–99.

Gosling, J. and McGilton, H. (1995). The Java language environment: a white paper.
Language, 1:86.

Griffith, I., Wahl, S., and Izurieta, C. (2011). Evolution of legacy system comprehensi-
bility through automated refactoring. In Proceedings of the International Workshop on
Machine Learning Technologies in Software Engineering (MALETS), pages 35–42, New
York, NY, USA. ACM.

Hozano, M., Garcia, A., Fonseca, B., and Costa, E. (2017). Are you smelling it? investi-
gating how similar developers detect code smells. Information and Software Technology.

https://martinfowler.com/bliki/CodeSmell.html

Bibliography 81

Hripcsak, G. and Rothschild, A. S. (2005). Agreement, the f-measure, and reliability
in information retrieval. Journal of the American Medical Informatics Association,
12(3):296–298.

Jaafar, F., Guéhéneuc, Y.-G., Hamel, S., Khomh, F., and Zulkernine, M. (2016). Evaluat-
ing the impact of design pattern and anti-pattern dependencies on changes and faults.
Empirical Software Engineering, 21(3):896–931.

Jain, A. (2010). Data clustering: 50 years beyond K-meansstar, open. Pattern Recognition
Letters, 31(8):651–666.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM
Computing Surveys, 31(3):264–323.

Juristo, N. and Moreno, A. M. (2001). Basics of Software Engineering Experimentation.
Analysis, 5/6:420.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.
(2017). Lightgbm: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems, pages 3149–3157.

Kell, D. B. (2005). Metabolomics, machine learning and modelling: towards an under-
standing of the language of cells. Biochemical Society transactions, 33(Pt 3):520–524.

Khan, S. S. and Madden, M. G. (2014). One-class classification: taxonomy of study and
review of techniques. The Knowledge Engineering Review, 29(3):345–374.

Khomh, F., Di Penta, M., and Gueheneuc, Y.-G. (2009a). An exploratory study of the
impact of code smells on software change-proneness. In Working Conference on Reverse
Engineering, 2009. WCRE’09., 16, pages 75–84, Lille, France. IEEE.

Khomh, F., Vaucher, S., Gueheneuc, Y. G., and Sahraoui, H. (2009b). A Bayesian Ap-
proach for the Detection of Code and Design Smells. In Quality Software, 2009. QSIC
’09. 9th International Conference on, pages 305–314, Jeju, Korea.

Khomh, F., Vaucher, S., Guéhéneuc, Y. G., and Sahraoui, H. (2011). BDTEX: A GQM-
based Bayesian approach for the detection of antipatterns. Journal of Systems and
Software, 84(4):559–572.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., and
Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary
study. Information and Software Technology, 52(8):792–805.

Kitchenham, B. A., Budgen, D., and Brereton, P. (2015). Evidence-based software engi-
neering and systematic reviews.

82 Bibliography

Kosker, Y., Turhan, B., and Bener, A. (2009). An expert system for determining candidate
software classes for refactoring. Expert Systems with Applications, 36(6):10000–10003.

Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age Interna-
tional.

Kotsiantis, S. B. (2007). Supervised Machine Learning : A Review of Classification
Techniques. Informatica, An International Journal of Computing and Informatics,
3176(31):249–268.

Kreimer, J. (2005). Adaptive detection of design flaws. Electronic Notes in Theoretical
Computer Science, 141(4):117–136.

Lee, S., Bae, G., Chae, H. S., Bae, D. H., and Kwon, Y. R. (2011). Automated scheduling
for clone-based refactoring using a competent GA. Software - Practice and Experience,
41(5):521–550.

Lee, S. J., Lo, L. H., Chen, Y. C., and Shen, S. M. (2016). Co-changing code volume
prediction through association rule mining and linear regression model. Expert Systems
with Applications, 45:185–194.

Leijdekkers, B. (2017). Metricsreloaded.

Li, Y. (2017). Deep Reinforcement Learning: An Overview. arXiv preprint
arXiv:1701.07274.

Liu, H., Ma, Z., Shao, W., and Niu, Z. (2012). Schedule of bad smell detection and
resolution: A new way to save effort. IEEE Transactions on Software Engineering,
38(1):220–235.

Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., and von Staa, A. (2012).
Are automatically-detected code anomalies relevant to architectural modularity? In
11th annual international conference on Aspect-oriented Software Development (AOSD
’12), page 167, Potsdam, Germany. ACM.

Maneerat, N. and Muenchaisri, P. (2011). Bad-smell prediction from software design
model using machine learning techniques. In 2011 Eighth International Joint Confer-
ence on Computer Science and Software Engineering (JCSSE), pages 331–336.

Mantyla, M., Vanhanen, J., and Lassenius, C. (2003). A taxonomy and an initial empirical
study of bad smells in code. International Conference on Software Maintenance, 2003.
ICSM 2003. Proceedings., OCTOBER:381–384.

Mantyla, M., Vanhanen, J., and Lassenius, C. (2004). Bad smells: humans as code critics.
In 20th IEEE International Conference on Software Maintenance, 2004. Proceedings.,
pages 399–408, Chicago, Illinois, USA. IEEE.

Bibliography 83

Marinescu, C., Marinescu, R., Mihancea, P. F., and Wettel, R. (2005). iplasma: An inte-
grated platform for quality assessment of object-oriented design. In In ICSM (Industrial
and Tool Volume. Citeseer.

Marinescu, R. (2004). Detection strategies: Metrics-based rules for detecting design flaws.
In IEEE International Conference on Software Maintenance, ICSM, pages 350–359,
Chicago, Illinois, USA. IEEE.

Marinescu, R. (2005). Measurement and quality in object-oriented design. In Software
Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International Conference
on, pages 701–704. IEEE.

Mens, T. and Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions
on software engineering, 30(2):126–139.

Mkaouer, M. W., Kessentini, M., Bechikh, S., Deb, K., and Ó Cinnéide, M. (2014a). High
dimensional search-based software engineering. In Proceedings of the 2014 conference
on Genetic and evolutionary computation - GECCO ’14, pages 1263–1270, New York,
NY, USA. ACM.

Mkaouer, M. W., Kessentini, M., Bechikh, S., Ó’Cinnéide, M., and Deb, K. (2014b). Soft-
ware refactoring under uncertainty. In Proceedings of the 2014 conference companion on
Genetic and evolutionary computation companion - GECCO Comp ’14, pages 187–188,
New York, NY, USA. ACM.

Moha, N. and Guéhéneuc, Y. (2010). DECOR: A method for the specification and detec-
tion of code and design smells. IEEE Transactions on Software Engineering, 36(1):20–
36.

Murphy-hill, E., Parnin, C., and Black, A. P. (2012). How We Refactor , and How We
Know It. IEEE Transactions on Software Engineering, 38(1):55–57.

Newman, D. R. (2006). The use of linkage learning in genetic algorithms. September.

Nongpong, K. (2012). Integrating" code smells" detection with refactoring tool support.
PhD thesis, The University of Wisconsin-Milwaukee.

Olbrich, S., Cruzes, D. S., Basili, V., and Zazworka, N. (2009). The Evolution and Impact
of Code Smells : A Case Study of Two Open Source Systems What are code smells ? In
Proceedings of the 2009 3rd international symposium on empirical software engineering
and measurement, April, pages 390–400, Orlando, FL, USA. IEEE Computer Society.

Oliveto, R., Gethers, M., Bavota, G., Poshyvanyk, D., and De Lucia, A. (2011). Identifying
method friendships to remove the feature envy bad smell. In Proceeding of the 33rd

84 Bibliography

international conference on Software engineering - ICSE ’11, page 820, New York, NY,
USA. ACM.

Palomba and Fabio (2015). Textual analysis for code smell detection. In Proceedings of
the 37th International Conference on Software Engineering - Volume 2, pages 769–771,
Piscataway, NJ, USA. IEEE Press.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., and De Lucia, A.
(2015a). Mining version histories for detecting code smells. IEEE Transactions on
Software Engineering, 41(5):462–489.

Palomba, F., Nucci, D. D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk, D., and
Lucia, A. D. (2015b). Landfill : an Open Dataset of Code Smells with Public Evaluation.
In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference
on, pages 482–485, Florence, Italy. IEEE.

Pmd (2013). Pmd.

Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation. Journal of Machine Learning Technologies, 2.

Rasool, G. and Arshad, Z. (2015). A review of code smell mining techniques. Journal of
Software: Evolution and Process, 27(11):867–895.

Rattan, D., Bhatia, R., and Singh, M. (2013). Software clone detection: A systematic
review. Information and Software Technology, 55(7):1165–1199.

Sahin, D., Kessentini, M., Bechikh, S., and Deb, K. (2014). Code-Smell Detection as
a Bilevel Problem. ACM Transactions on Software Engineering and Methodology,
24(1):1–44.

Seng, O., Stammel, J., and Burkhart, D. (2006). Search-based Determination of Refactor-
ings for Improving the Class Structure of Object-oriented Systems. In Proceedings of the
8th Annual Conference on Genetic and Evolutionary Computation, pages 1909–1916,
Seattle, WA, USA. ACM.

Shatnawi, R. and Li, W. (2008). The effectiveness of software metrics in identifying
error-prone classes in post-release software evolution process. Journal of Systems and
Software, 81(11):1868–1882.

Shull, F. J., Carver, J. C., Vegas, S., and Juristo, N. (2008). The role of replications in
Empirical Software Engineering. Empirical Software Engineering, 13(2):211–218.

Sjoberg, D. I. K., Yamashita, A., Anda, B. C. D., Mockus, A., and Dyba, T. (2013).
Quantifying the effect of code smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156.

Bibliography 85

Soltanifar, B., Akbarinasaji, S., Caglayan, B., Bener, A. B., Filiz, A., and Kramer, B. M.
(2016). Software Analytics in Practice. In Proceedings of the 20th International
Database Engineering & Applications Symposium on - IDEAS ’16, pages 148–155, New
York, NY, USA. ACM.

Taibi, D., Janes, A., and Lenarduzzi, V. (2017). How developers perceive smells in source
code: A replicated study. Information and Software Technology, 92(Supplement C):223
– 235.

Tufano, M., Palomba, F., Bavota, G., Olivetox, R., Di Penta, M., De Lucia, A., and
Poshyvanyk, D. (2015). When and why your code starts to smell bad. In Proceedings -
International Conference on Software Engineering, volume 1, pages 403–414, Florence,
Italy. IEEE Press.

Walter, B. and Alkhaeir, T. (2016). The relationship between design patterns and code
smells: An exploratory study. Information and Software Technology, 74:127–142.

Wang, H., Kessentini, M., Grosky, W., and Meddeb, H. (2015). On the use of time series
and search based software engineering for refactoring recommendation. In Proceedings
of the 7th International Conference on Management of computational and collective
intElligence in Digital EcoSystems - MEDES ’15, volume 7, pages 35–42, New York,
NY, USA. ACM.

Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012). Systematic literature review of
machine learning based software development effort estimation models. Information
and Software Technology, 54(1):41–59.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.

Yamashita, A. and Moonen, L. (2013). Do developers care about code smells? An ex-
ploratory survey. In Proceedings - Working Conference on Reverse Engineering, WCRE,
volume 13, pages 242–251, Koblenz, Germany.

Zelkowitz, M. V. and Wallace, D. R. (1998). Experimental models for validating technol-
ogy. Computer, 31(5):23–31.

Zhang, H., Babar, M. A., and Tell, P. (2011a). Identifying relevant studies in software
engineering. Information and Software Technology, 53(6):625–637.

Zhang, M., Hall, T., and Baddoo, N. (2011b). Code Bad Smells: A review of current
knowledge. Journal of Software Maintenance and Evolution, 23(3):179–202.

Zhu, X. (2011). Semi-supervised learning. In Encyclopedia of Machine Learning, pages
892–897. Springer.

86 Bibliography

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis
lectures on artificial intelligence and machine learning, 3(1):1–130.

Zibran, M. F. and Roy, C. K. (2012). IDE-based Real-time Focused Search for Near-miss
Clones. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
pages 1235–1242, New York, NY, USA. ACM.

Appendix

89

APPENDIX A – SLR Results and Articles

Table 10 – F-Measure summary per smell and technique: Ordered by the median f-
measure

Smell Technique Min Median Max

Middle Man

Decision Tree 1.00 1.00 1.00
Linear Statistics 0.85 0.85 0.85
Nearest Neighbor 0.85 0.85 0.85
Random Forest 0.71 0.71 0.71
Naive Bayes Classifier 0.14 0.38 0.62

Speculative Generality Association Rules (AR) 0.86 1.00 1.00
Divergent Change Association Rules (AR) 0.55 0.85 1.00

Long Method

Association Rules (AR) 0.99 0.99 0.99
Random Forest 0.86 0.92 0.99
Decision Tree 0.86 0.92 0.98
Support Vector Machine 0.69 0.83 0.97
Naive Bayes Classifier 0.54 0.60 0.93
Nearest Neighbor 0.89 0.90 0.90
Linear Statistics 0.84 0.84 0.84
Text-Based 0.56 0.62 0.71

Large Class

Random Forest 0.97 0.97 0.97
Association Rules (AR) 0.97 0.97 0.97
Decision Tree 0.96 0.96 0.96
Naive Bayes Classifier 0.96 0.96 0.96
Support Vector Machine 0.73 0.85 0.96

Long Parameter List

Random Forest 0.97 0.97 0.97
Linear Statistics 0.95 0.95 0.95
Nearest Neighbor 0.92 0.92 0.92
Decision Tree 0.92 0.92 0.92
Naive Bayes Classifier 0.31 0.32 0.33

Shotgun Surgery

Decision Tree 0.97 0.97 0.97
Nearest Neighbor 0.89 0.90 0.91
Linear Statistics 0.89 0.89 0.89
Random Forest 0.89 0.89 0.89
Naive Bayes Classifier 0.52 0.61 0.70

Feature Envy

Decision Tree 0.96 0.96 0.96
Support Vector Machine 0.69 0.83 0.96
Naive Bayes Classifier 0.24 0.26 0.95
Random Forest 0.94 0.94 0.94

90 APPENDIX A. SLR Results and Articles

Association Rules (AR) 0.86 0.86 0.86
Nearest Neighbor 0.84 0.84 0.84
Linear Statistics 0.75 0.75 0.75

Duplicated Code
Semi-supervised 0.96 0.96 0.96
Association Rules (AR) 0.72 0.85 0.85

Message Chains

Linear Statistics 0.86 0.86 0.86
Nearest Neighbor 0.86 0.86 0.86
Random Forest 0.80 0.80 0.80
Naive Bayes Classifier 0.67 0.71 0.76
Decision Tree 0.66 0.66 0.66

God Class Clustering 0.66 0.72 0.82
BLOB Bayesian Networks (BN) 0.60 0.69 0.79

Table 11 – Precision and recall summary per smell and technique: Ordered by the median
precision

Technique Smell Description
Precision Recall

Min Mean Max Min Mean Max
Decision Tree Middle Man 1.00 1.00 1.00 1.00 1.00 1.00
Decision Tree Shotgun Surgery 0.94 0.94 0.94 0.99 0.99 0.99
Decision Tree Long Parameter List 0.86 0.86 0.86 0.98 0.98 0.98
Decision Tree Long Method 0.77 0.77 0.77 0.97 0.97 0.97
Decision Tree Message Chains 0.60 0.60 0.60 0.73 0.73 0.73
Semi-supervised Duplicated Code 1.00 1.00 1.00 0.94 0.94 0.94
Association Rules
(AR)

Speculative General-
ity

0.75 0.94 1.00 1.00 1.00 1.00

Association Rules
(AR)

Duplicated Code 0.75 0.85 0.90 0.60 0.79 0.90

Association Rules
(AR)

Divergent Change 0.50 0.80 1.00 0.50 0.76 1.00

Random Forest Long Parameter List 0.95 0.95 0.95 0.99 0.99 0.99
Random Forest Feature Envy 0.89 0.89 0.89 0.99 0.99 0.99
Random Forest Shotgun Surgery 0.81 0.81 0.81 0.98 0.98 0.98
Random Forest Long Method 0.77 0.77 0.77 0.96 0.96 0.96
Random Forest Middle Man 0.76 0.76 0.76 0.67 0.67 0.67
Random Forest Message Chains 0.75 0.75 0.75 0.87 0.87 0.87
Linear Statistics Long Parameter List 0.92 0.92 0.92 0.99 0.99 0.99
Linear Statistics Middle Man 0.88 0.88 0.88 0.83 0.83 0.83
Linear Statistics Message Chains 0.86 0.86 0.86 0.87 0.87 0.87

91

Linear Statistics Shotgun Surgery 0.81 0.81 0.81 0.98 0.98 0.98
Linear Statistics Long Method 0.74 0.74 0.74 0.96 0.96 0.96
Linear Statistics Feature Envy 0.62 0.62 0.62 0.97 0.97 0.97
Nearest Neighbor Middle Man 0.88 0.88 0.88 0.83 0.83 0.83
Nearest Neighbor Long Parameter List 0.87 0.87 0.87 0.98 0.98 0.98
Nearest Neighbor Message Chains 0.86 0.86 0.86 0.87 0.87 0.87
Nearest Neighbor Shotgun Surgery 0.81 0.83 0.85 0.98 0.98 0.98
Nearest Neighbor Long Method 0.83 0.83 0.83 0.98 0.98 0.98
Nearest Neighbor Feature Envy 0.73 0.73 0.73 0.98 0.98 0.98
Clustering God Class 0.54 0.67 0.77 0.75 0.82 0.88
Naive Bayes Classifier Message Chains 0.67 0.70 0.73 0.67 0.73 0.80
Naive Bayes Classifier Middle Man 0.54 0.60 0.67 0.08 0.33 0.58
Naive Bayes Classifier Shotgun Surgery 0.38 0.47 0.56 0.83 0.88 0.92
Naive Bayes Classifier Long Method 0.40 0.43 0.47 0.82 0.84 0.85
Naive Bayes Classifier Long Parameter List 0.21 0.23 0.24 0.54 0.55 0.56
Naive Bayes Classifier Feature Envy 0.14 0.15 0.16 0.73 0.73 0.74
Text-Based Long Method 0.63 0.66 0.67 0.50 0.61 0.77
Bayesian Networks
(BN)

BLOB 0.43 0.54 0.65 1.00 1.00 1.00

Table 12 – Articles selected for SLR

Article Author
A Bayesian Approach for the Detection of Code and Design Smells Khomh

et al.
(2009b)

An expert system for determining candidate software classes for refactoring Kosker
et al.
(2009)

Automated scheduling for clone-based refactoring using a competent GA Lee
et al.
(2011)

Automatic Metric Thresholds Derivation for Code Smell Detection Fontana
et al.
(2015)

92 APPENDIX A. SLR Results and Articles

Bad-smell prediction from software design model using machine learning tech-
niques

Ma-
neerat
and
Muen-
chaisri
(2011)

BDTEX: A GQM-based Bayesian approach for the detection of anti-patterns Khomh
et al.
(2011)

Co-changing code volume prediction through association rule mining and linear
regression model

Lee
et al.
(2016)

Code Bad Smell Detection through Evolutionary Data Mining Fu and
Shen
(2015)

Code Smell Detection: Towards a Machine Learning-Based Approach Fontana
et al.
(2013)

Code-Smell Detection As a Bilevel Problem Sahin
et al.
(2014)

Evolution of Legacy System Comprehensibility Through Automated Refactoring Griffith
et al.
(2011)

Hidden Truths in Dead Software Paths Eich-
berg
et al.
(2015)

High Dimensional Search-based Software Engineering Mkaouer
et al.
(2014a)

IDE-based Real-time Focused Search for Near-miss Clones Zibran
and Roy
(2012)

Identification and application of Extract Class refactorings in object-oriented
systems

Fokaefs
et al.
(2012)

93

Identifying Extract Class refactoring opportunities using structural and semantic
cohesion measures

Bavota
et al.
(2011)

Identifying Method Friendships to Remove the Feature Envy Bad Smell Oliveto
et al.
(2011)

Mining static and dynamic crosscutting concerns: a role-based approach Bernardi
et al.
(2016)

Mining Version Histories for Detecting Code Smells Palomba
et al.
(2015a)

Model refactoring using examples: a search-based approach Ghan-
nem
et al.
(2014)

On the Use of Time Series and Search Based Software Engineering for Refactoring
Recommendation

Wang
et al.
(2015)

Search-based Determination of Refactorings for Improving the Class Structure
of Object-oriented Systems

Seng
et al.
(2006)

Software Analytics in Practice: A Defect Prediction Model Using Code Smells Soltani-
far et al.
(2016)

Software Refactoring Under Uncertainty: A Robust Multi-objective Approach Mkaouer
et al.
(2014b)

Textual Analysis for Code Smell Detection Palomba
and
Fabio
(2015)

Using Concept Analysis to Detect Co-change Patterns Gîrba
et al.
(2007)

95

APPENDIX B – Experiment Results

Table 13 – Experiment Results and Confidence Interval (lowerbound(LB), mean and up-
perbound(UB))

Smell Category Model
F-Measure Precision Recall

CI
(LB)

Mean CI
(UB)

CI
(LB)

Mean CI
(UB)

CI
(LB)

Mean CI
(UB)

Blob Boosting XGBoost - Using
PU Weighting

0.5119 0.5913 0.6339 0.4322 0.5590 0.6404 0.6275 0.6275 0.6275

Blob Boosting CatBoost - Using
PU Weighting

0.5215 0.5834 0.6151 0.4954 0.6204 0.6967 0.5506 0.5506 0.5506

Blob Boosting XGBoost - Using
PU Weighting
- Using Smote-
Tomek

0.4970 0.5772 0.6206 0.4169 0.5434 0.6258 0.6154 0.6154 0.6154

Blob Boosting CatBoost - Using
PU Weighting
- Using Smote-
Tomek

0.5050 0.5636 0.5934 0.4925 0.6176 0.6942 0.5182 0.5182 0.5182

Blob Adjusted
Baseline

Random Forest
- Using PU
Weighting - Us-
ing SmoteTomek

0.4707 0.5542 0.6003 0.3843 0.5096 0.5935 0.6073 0.6073 0.6073

Blob Adjusted
Baseline

Random Forest
- Using PU
Weighting

0.4551 0.5378 0.5838 0.3716 0.4961 0.5805 0.5870 0.5870 0.5870

Blob Adjusted
Baseline

Decision Tree
- Using PU
Weighting

0.4153 0.4558 0.4759 0.4829 0.6086 0.6860 0.3644 0.3644 0.3644

Blob Ensemble Soft Voting 0.4217 0.4463 0.4579 0.6042 0.7176 0.7813 0.3239 0.3239 0.3239
Blob Ensemble Soft Voting - Us-

ing SmoteTomek
0.4140 0.4381 0.4494 0.6009 0.7148 0.7789 0.3158 0.3158 0.3158

Blob Baseline Decision Tree 0.3772 0.4215 0.4442 0.4174 0.5439 0.6263 0.3441 0.3441 0.3441
Blob Boosting CatBoost - Using

SmoteTomek
0.3966 0.4117 0.4186 0.6837 0.7825 0.8349 0.2794 0.2794 0.2794

Blob Boosting CatBoost 0.3953 0.4108 0.4180 0.6756 0.7761 0.8297 0.2794 0.2794 0.2794
Blob Ensemble Soft Voting - Us-

ing PU Weight-
ing

0.2981 0.4080 0.4858 0.1809 0.2688 0.3407 0.8462 0.8462 0.8462

Blob Adjusted
Baseline

Decision Tree
- Using PU
Weighting - Us-
ing SmoteTomek

0.3675 0.4080 0.4286 0.4246 0.5512 0.6332 0.3239 0.3239 0.3239

Blob Adjusted
Baseline

Decision Tree
- Using Smote-
Tomek

0.3639 0.4079 0.4304 0.4026 0.5287 0.6119 0.3320 0.3320 0.3320

Blob Ensemble Soft Voting
- Using PU
Weighting - Us-
ing SmoteTomek

0.2863 0.3950 0.4729 0.1719 0.2569 0.3270 0.8543 0.8543 0.8543

Blob Boosting Light GBM 0.3481 0.3584 0.3630 0.7081 0.8016 0.8502 0.2308 0.2308 0.2308
Blob Boosting Light GBM - Us-

ing SmoteTomek
0.3481 0.3584 0.3630 0.7081 0.8016 0.8502 0.2308 0.2308 0.2308

96 APPENDIX B. Experiment Results

Blob Boosting XGBoost 0.3345 0.3418 0.3450 0.7586 0.8395 0.8803 0.2146 0.2146 0.2146
Blob Boosting XGBoost - Using

SmoteTomek
0.3345 0.3418 0.3450 0.7586 0.8395 0.8803 0.2146 0.2146 0.2146

Blob Adjusted
Baseline

Random For-
est - Using
SmoteTomek

0.3268 0.3349 0.3385 0.7296 0.8179 0.8632 0.2105 0.2105 0.2105

Blob Adjusted
Baseline

Naïve Bayes - Us-
ing SmoteTomek

0.2106 0.3062 0.3814 0.1186 0.1831 0.2395 0.9352 0.9352 0.9352

Blob Baseline Naïve Bayes 0.2106 0.3062 0.3814 0.1186 0.1831 0.2395 0.9352 0.9352 0.9352
Blob Adjusted

Baseline
Naïve Bayes - Us-
ing PU Weight-
ing

0.2104 0.3062 0.3816 0.1183 0.1826 0.2389 0.9474 0.9474 0.9474

Blob Baseline Random Forest 0.2986 0.3046 0.3072 0.7534 0.8357 0.8773 0.1862 0.1862 0.1862
Blob Adjusted

Baseline
Naïve Bayes
- Using PU
Weighting - Us-
ing SmoteTomek

0.2072 0.3020 0.3768 0.1164 0.1799 0.2356 0.9393 0.9393 0.9393

Blob Boosting Light GBM
- Using PU
Weighting - Us-
ing SmoteTomek

0.0472 0.0762 0.1037 0.0242 0.0397 0.0549 0.9312 0.9312 0.9312

Blob Boosting Light GBM - Us-
ing PU Weight-
ing

0.0264 0.0432 0.0596 0.0134 0.0221 0.0308 0.9474 0.9474 0.9474

Blob One class
classifica-
tion

Isolation Forest 0.0024 0.0040 0.0056 0.0012 0.0021 0.0029 0.0972 0.0972 0.0972

Blob One class
classifica-
tion

Isolation Forest
- Using Smote-
Tomek

0.0023 0.0039 0.0054 0.0012 0.0020 0.0028 0.0931 0.0931 0.0931

Blob One class
classifica-
tion

One Class SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Blob One class
classifica-
tion

One Class SVM
- Using Smote-
Tomek

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Divergent
Change

Ensemble Soft Voting 0.3525 0.5157 0.5841 0.2495 0.4522 0.5690 0.6000 0.6000 0.6000

Divergent
Change

Ensemble Soft Voting - Us-
ing SmoteTomek

0.3455 0.5096 0.5791 0.2425 0.4428 0.5597 0.6000 0.6000 0.6000

Divergent
Change

Ensemble Soft Voting - Us-
ing PU Weight-
ing

0.3455 0.5096 0.5791 0.2425 0.4428 0.5597 0.6000 0.6000 0.6000

Divergent
Change

Ensemble Soft Voting
- Using PU
Weighting - Us-
ing SmoteTomek

0.3259 0.4920 0.5649 0.2237 0.4170 0.5336 0.6000 0.6000 0.6000

Divergent
Change

Adjusted
Baseline

Association
Rules - Using PU
Weighting

0.2584 0.4567 0.5667 0.1509 0.3060 0.4136 0.9000 0.9000 0.9000

Divergent
Change

Baseline Association
Rules

0.2584 0.4567 0.5667 0.1509 0.3060 0.4136 0.9000 0.9000 0.9000

Divergent
Change

Adjusted
Baseline

Association
Rules - Using PU
Weighting - Us-
ing SmoteTomek

0.2533 0.4503 0.5605 0.1474 0.3003 0.4070 0.9000 0.9000 0.9000

97

Divergent
Change

Boosting Light GBM - Us-
ing PU Weight-
ing

0.2739 0.4225 0.4897 0.1886 0.3658 0.4799 0.5000 0.5000 0.5000

Divergent
Change

Boosting Light GBM
- Using PU
Weighting - Us-
ing SmoteTomek

0.2739 0.4225 0.4897 0.1886 0.3658 0.4799 0.5000 0.5000 0.5000

Divergent
Change

Adjusted
Baseline

Association
Rules - Using
SmoteTomek

0.2354 0.4196 0.5231 0.1380 0.2844 0.3886 0.8000 0.8000 0.8000

Divergent
Change

Boosting CatBoost 0.3643 0.4167 0.4325 0.4637 0.6821 0.7744 0.3000 0.3000 0.3000

Divergent
Change

Boosting CatBoost - Using
SmoteTomek

0.3643 0.4167 0.4325 0.4637 0.6821 0.7744 0.3000 0.3000 0.3000

Divergent
Change

Boosting CatBoost - Using
PU Weighting
- Using Smote-
Tomek

0.3643 0.4167 0.4325 0.4637 0.6821 0.7744 0.3000 0.3000 0.3000

Divergent
Change

Boosting CatBoost - Using
PU Weighting

0.3234 0.3938 0.4167 0.3508 0.5729 0.6820 0.3000 0.3000 0.3000

Divergent
Change

Boosting Light GBM 0.2552 0.3811 0.4355 0.1874 0.3640 0.4779 0.4000 0.4000 0.4000

Divergent
Change

Boosting Light GBM - Us-
ing SmoteTomek

0.2552 0.3811 0.4355 0.1874 0.3640 0.4779 0.4000 0.4000 0.4000

Divergent
Change

Boosting XGBoost - Using
SmoteTomek

0.2725 0.3607 0.3929 0.2495 0.4522 0.5690 0.3000 0.3000 0.3000

Divergent
Change

Boosting XGBoost 0.2641 0.3547 0.3884 0.2359 0.4339 0.5507 0.3000 0.3000 0.3000

Divergent
Change

Boosting XGBoost - Using
PU Weighting

0.2641 0.3547 0.3884 0.2359 0.4339 0.5507 0.3000 0.3000 0.3000

Divergent
Change

Boosting XGBoost - Using
PU Weighting
- Using Smote-
Tomek

0.2563 0.3490 0.3841 0.2237 0.4170 0.5336 0.3000 0.3000 0.3000

Divergent
Change

One class
classifica-
tion

Isolation Forest 0.0011 0.0028 0.0044 0.0006 0.0014 0.0022 0.4000 0.4000 0.4000

Divergent
Change

One class
classifica-
tion

Isolation Forest
- Using Smote-
Tomek

0.0011 0.0028 0.0044 0.0006 0.0014 0.0022 0.4000 0.4000 0.4000

Divergent
Change

One class
classifica-
tion

One Class SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Divergent
Change

One class
classifica-
tion

One Class SVM
- Using Smote-
Tomek

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Feature
Envy

Adjusted
Baseline

Random Forest
- Using PU
Weighting - Us-
ing SmoteTomek

0.4314 0.4715 0.4878 0.5446 0.6935 0.7694 0.3571 0.3571 0.3571

Feature
Envy

Boosting CatBoost - Using
SmoteTomek

0.4344 0.4666 0.4794 0.5974 0.7373 0.8054 0.3413 0.3413 0.3413

Feature
Envy

Baseline Random Forest 0.4400 0.4664 0.4767 0.6469 0.7761 0.8364 0.3333 0.3333 0.3333

Feature
Envy

Boosting CatBoost - Using
PU Weighting
- Using Smote-
Tomek

0.4334 0.4660 0.4790 0.5939 0.7344 0.8031 0.3413 0.3413 0.3413

98 APPENDIX B. Experiment Results

Feature
Envy

Boosting CatBoost 0.4325 0.4654 0.4786 0.5903 0.7316 0.8008 0.3413 0.3413 0.3413

Feature
Envy

Adjusted
Baseline

Random For-
est - Using
SmoteTomek

0.4327 0.4584 0.4684 0.6458 0.7752 0.8357 0.3254 0.3254 0.3254

Feature
Envy

Ensemble Soft Voting 0.3547 0.4450 0.4901 0.2917 0.4379 0.5346 0.4524 0.4524 0.4524

Feature
Envy

Adjusted
Baseline

Decision Tree
- Using PU
Weighting - Us-
ing SmoteTomek

0.3748 0.4440 0.4757 0.3616 0.5173 0.6124 0.3889 0.3889 0.3889

Feature
Envy

Ensemble Soft Voting - Us-
ing SmoteTomek

0.3495 0.4407 0.4865 0.2848 0.4296 0.5262 0.4524 0.4524 0.4524

Feature
Envy

Boosting CatBoost - Using
PU Weighting

0.4094 0.4407 0.4531 0.5763 0.7201 0.7914 0.3175 0.3175 0.3175

Feature
Envy

Adjusted
Baseline

Random Forest
- Using PU
Weighting

0.4016 0.4393 0.4547 0.5243 0.6759 0.7546 0.3254 0.3254 0.3254

Feature
Envy

Adjusted
Baseline

Decision Tree
- Using Smote-
Tomek

0.3575 0.4262 0.4580 0.3432 0.4970 0.5931 0.3730 0.3730 0.3730

Feature
Envy

Baseline Decision Tree 0.3483 0.4168 0.4487 0.3330 0.4857 0.5821 0.3651 0.3651 0.3651

Feature
Envy

Adjusted
Baseline

Decision Tree
- Using PU
Weighting

0.3478 0.4164 0.4484 0.3320 0.4846 0.5809 0.3651 0.3651 0.3651

Feature
Envy

Ensemble Soft Voting
- Using PU
Weighting - Us-
ing SmoteTomek

0.3010 0.4046 0.4621 0.2168 0.3436 0.4356 0.4921 0.4921 0.4921

Feature
Envy

Ensemble Soft Voting - Us-
ing PU Weight-
ing

0.2864 0.3868 0.4429 0.2063 0.3295 0.4202 0.4683 0.4683 0.4683

Feature
Envy

Boosting XGBoost 0.1751 0.2735 0.3431 0.1029 0.1782 0.2424 0.5873 0.5873 0.5873

Feature
Envy

Boosting XGBoost - Using
SmoteTomek

0.1681 0.2629 0.3300 0.0991 0.1722 0.2347 0.5556 0.5556 0.5556

Feature
Envy

Boosting XGBoost - Using
PU Weighting
- Using Smote-
Tomek

0.1505 0.2424 0.3110 0.0855 0.1503 0.2068 0.6270 0.6270 0.6270

Feature
Envy

Boosting Light GBM - Us-
ing SmoteTomek

0.1480 0.2379 0.3048 0.0845 0.1487 0.2048 0.5952 0.5952 0.5952

Feature
Envy

Boosting Light GBM 0.1477 0.2378 0.3049 0.0842 0.1481 0.2040 0.6032 0.6032 0.6032

Feature
Envy

Boosting XGBoost - Using
PU Weighting

0.1464 0.2359 0.3029 0.0833 0.1467 0.2022 0.6032 0.6032 0.6032

Feature
Envy

Boosting Light GBM
- Using PU
Weighting - Us-
ing SmoteTomek

0.0984 0.1673 0.2240 0.0532 0.0962 0.1356 0.6429 0.6429 0.6429

Feature
Envy

Boosting Light GBM - Us-
ing PU Weight-
ing

0.0972 0.1658 0.2224 0.0525 0.0948 0.1338 0.6587 0.6587 0.6587

Feature
Envy

Baseline Naïve Bayes 0.0964 0.1647 0.2212 0.0520 0.0939 0.1326 0.6667 0.6667 0.6667

Feature
Envy

Adjusted
Baseline

Naïve Bayes - Us-
ing SmoteTomek

0.0951 0.1626 0.2187 0.0512 0.0926 0.1308 0.6667 0.6667 0.6667

99

Feature
Envy

Adjusted
Baseline

Naïve Bayes
- Using PU
Weighting - Us-
ing SmoteTomek

0.0772 0.1347 0.1844 0.0409 0.0746 0.1062 0.6984 0.6984 0.6984

Feature
Envy

Adjusted
Baseline

Naïve Bayes - Us-
ing PU Weight-
ing

0.0705 0.1238 0.1704 0.0371 0.0679 0.0970 0.6984 0.6984 0.6984

Feature
Envy

One class
classifica-
tion

Isolation Forest 0.0064 0.0121 0.0177 0.0032 0.0061 0.0090 0.7540 0.7540 0.7540

Feature
Envy

One class
classifica-
tion

Isolation Forest
- Using Smote-
Tomek

0.0064 0.0121 0.0177 0.0032 0.0061 0.0090 0.7540 0.7540 0.7540

Feature
Envy

One class
classifica-
tion

One Class SVM 0.0024 0.0046 0.0067 0.0012 0.0023 0.0034 0.1905 0.1905 0.1905

Feature
Envy

One class
classifica-
tion

One Class SVM
- Using Smote-
Tomek

0.0024 0.0046 0.0067 0.0012 0.0023 0.0034 0.1905 0.1905 0.1905

Long
Method

Adjusted
Baseline

Random Forest
- Using PU
Weighting

0.6320 0.6794 0.7066 0.6014 0.6935 0.7527 0.6659 0.6659 0.6659

Long
Method

Boosting CatBoost - Using
PU Weighting
- Using Smote-
Tomek

0.6362 0.6745 0.6960 0.6511 0.7367 0.7902 0.6220 0.6220 0.6220

Long
Method

Boosting CatBoost - Using
PU Weighting

0.6356 0.6740 0.6957 0.6498 0.7357 0.7892 0.6220 0.6220 0.6220

Long
Method

Baseline Decision Tree 0.6289 0.6704 0.6940 0.6286 0.7174 0.7735 0.6293 0.6293 0.6293

Long
Method

Adjusted
Baseline

Decision Tree
- Using PU
Weighting

0.6228 0.6639 0.6873 0.6261 0.7152 0.7717 0.6195 0.6195 0.6195

Long
Method

Adjusted
Baseline

Decision Tree
- Using Smote-
Tomek

0.6205 0.6617 0.6851 0.6240 0.7134 0.7701 0.6171 0.6171 0.6171

Long
Method

Boosting XGBoost - Using
PU Weighting

0.5933 0.6599 0.7004 0.4944 0.5946 0.6637 0.7415 0.7415 0.7415

Long
Method

Ensemble Soft Voting - Us-
ing PU Weight-
ing

0.6083 0.6533 0.6791 0.5952 0.6880 0.7479 0.6220 0.6220 0.6220

Long
Method

Adjusted
Baseline

Decision Tree
- Using PU
Weighting - Us-
ing SmoteTomek

0.6114 0.6520 0.6751 0.6207 0.7105 0.7676 0.6024 0.6024 0.6024

Long
Method

Adjusted
Baseline

Random Forest
- Using PU
Weighting - Us-
ing SmoteTomek

0.5770 0.6471 0.6901 0.4703 0.5711 0.6418 0.7463 0.7463 0.7463

Long
Method

Boosting XGBoost - Using
PU Weighting
- Using Smote-
Tomek

0.5846 0.6451 0.6813 0.5097 0.6092 0.6772 0.6854 0.6854 0.6854

Long
Method

Boosting CatBoost - Using
SmoteTomek

0.6211 0.6363 0.6443 0.8133 0.8672 0.8978 0.5024 0.5024 0.5024

100 APPENDIX B. Experiment Results

Long
Method

Ensemble Soft Voting
- Using PU
Weighting - Us-
ing SmoteTomek

0.5610 0.6332 0.6781 0.4502 0.5512 0.6230 0.7439 0.7439 0.7439

Long
Method

Adjusted
Baseline

Random For-
est - Using
SmoteTomek

0.6199 0.6314 0.6375 0.8500 0.8947 0.9196 0.4878 0.4878 0.4878

Long
Method

Boosting CatBoost 0.6170 0.6307 0.6380 0.8252 0.8762 0.9050 0.4927 0.4927 0.4927

Long
Method

Baseline Random Forest 0.5955 0.6090 0.6162 0.8177 0.8706 0.9005 0.4683 0.4683 0.4683

Long
Method

Ensemble Soft Voting 0.5564 0.5792 0.5917 0.7017 0.7791 0.8260 0.4610 0.4610 0.4610

Long
Method

Ensemble Soft Voting - Us-
ing SmoteTomek

0.5561 0.5784 0.5905 0.7065 0.7831 0.8293 0.4585 0.4585 0.4585

Long
Method

Boosting Light GBM - Us-
ing PU Weight-
ing

0.4828 0.5697 0.6277 0.3452 0.4416 0.5155 0.8024 0.8024 0.8024

Long
Method

Adjusted
Baseline

Naïve Bayes - Us-
ing PU Weight-
ing

0.4801 0.5434 0.5830 0.4069 0.5071 0.5806 0.5854 0.5854 0.5854

Long
Method

Boosting Light GBM 0.5261 0.5426 0.5515 0.7428 0.8124 0.8536 0.4073 0.4073 0.4073

Long
Method

Boosting Light GBM - Us-
ing SmoteTomek

0.5261 0.5426 0.5515 0.7428 0.8124 0.8536 0.4073 0.4073 0.4073

Long
Method

Adjusted
Baseline

Naïve Bayes
- Using PU
Weighting - Us-
ing SmoteTomek

0.4790 0.5425 0.5822 0.4053 0.5054 0.5790 0.5854 0.5854 0.5854

Long
Method

Adjusted
Baseline

Naïve Bayes - Us-
ing SmoteTomek

0.4789 0.5407 0.5790 0.4113 0.5116 0.5850 0.5732 0.5732 0.5732

Long
Method

Baseline Naïve Bayes 0.4789 0.5407 0.5790 0.4113 0.5116 0.5850 0.5732 0.5732 0.5732

Long
Method

Boosting XGBoost 0.5230 0.5344 0.5405 0.8029 0.8593 0.8915 0.3878 0.3878 0.3878

Long
Method

Boosting XGBoost - Using
SmoteTomek

0.5230 0.5344 0.5405 0.8029 0.8593 0.8915 0.3878 0.3878 0.3878

Long
Method

Boosting Light GBM
- Using PU
Weighting - Us-
ing SmoteTomek

0.2009 0.2724 0.3334 0.1131 0.1606 0.2047 0.8976 0.8976 0.8976

Long
Method

One class
classifica-
tion

Isolation Forest
- Using Smote-
Tomek

0.0198 0.0290 0.0381 0.0103 0.0154 0.0206 0.2512 0.2512 0.2512

Long
Method

One class
classifica-
tion

Isolation Forest 0.0185 0.0271 0.0356 0.0096 0.0144 0.0193 0.2341 0.2341 0.2341

Long
Method

One class
classifica-
tion

One Class SVM 0.0074 0.0107 0.0139 0.0040 0.0060 0.0080 0.0537 0.0537 0.0537

Long
Method

One class
classifica-
tion

One Class SVM
- Using Smote-
Tomek

0.0074 0.0107 0.0139 0.0040 0.0060 0.0080 0.0537 0.0537 0.0537

Parallel
Inheri-
tance

Ensemble Soft Voting 0.3571 0.5850 0.6436 0.2703 0.6583 0.8280 0.5263 0.5263 0.5263

101

Parallel
Inheri-
tance

Boosting CatBoost - Using
PU Weighting

0.4242 0.5120 0.5275 0.5000 0.8387 0.9286 0.3684 0.3684 0.3684

Parallel
Inheri-
tance

Ensemble Soft Voting
- Using PU
Weighting - Us-
ing SmoteTomek

0.2075 0.4931 0.6137 0.1264 0.4295 0.6530 0.5789 0.5789 0.5789

Parallel
Inheri-
tance

Ensemble Soft Voting - Us-
ing SmoteTomek

0.2857 0.4912 0.5474 0.2162 0.5893 0.7820 0.4211 0.4211 0.4211

Parallel
Inheri-
tance

Ensemble Soft Voting - Us-
ing PU Weight-
ing

0.1961 0.4647 0.5778 0.1205 0.4161 0.6404 0.5263 0.5263 0.5263

Parallel
Inheri-
tance

Boosting CatBoost 0.4000 0.4622 0.4727 0.5455 0.8619 0.9398 0.3158 0.3158 0.3158

Parallel
Inheri-
tance

Boosting CatBoost - Using
SmoteTomek

0.3636 0.4522 0.4685 0.4286 0.7960 0.9070 0.3158 0.3158 0.3158

Parallel
Inheri-
tance

Boosting XGBoost - Using
PU Weighting

0.2264 0.3950 0.4419 0.1765 0.5271 0.7358 0.3158 0.3158 0.3158

Parallel
Inheri-
tance

Boosting Light GBM 0.1842 0.3931 0.4691 0.1228 0.4214 0.6454 0.3684 0.3684 0.3684

Parallel
Inheri-
tance

Boosting XGBoost - Using
PU Weighting
- Using Smote-
Tomek

0.2222 0.3925 0.4407 0.1714 0.5183 0.7290 0.3158 0.3158 0.3158

Parallel
Inheri-
tance

Boosting Light GBM
- Using PU
Weighting - Us-
ing SmoteTomek

0.1404 0.3659 0.4749 0.0842 0.3235 0.5445 0.4211 0.4211 0.4211

Parallel
Inheri-
tance

Boosting Light GBM - Us-
ing SmoteTomek

0.1429 0.3302 0.4062 0.0923 0.3460 0.5693 0.3158 0.3158 0.3158

Parallel
Inheri-
tance

Boosting CatBoost - Using
PU Weighting
- Using Smote-
Tomek

0.2667 0.3286 0.3399 0.3636 0.7483 0.8814 0.2105 0.2105 0.2105

Parallel
Inheri-
tance

Boosting Light GBM - Us-
ing PU Weight-
ing

0.1217 0.3247 0.4262 0.0729 0.2903 0.5056 0.3684 0.3684 0.3684

Parallel
Inheri-
tance

Boosting XGBoost - Using
SmoteTomek

0.1538 0.2800 0.3171 0.1212 0.4177 0.6420 0.2105 0.2105 0.2105

Parallel
Inheri-
tance

Boosting XGBoost 0.1509 0.2781 0.3161 0.1176 0.4095 0.6341 0.2105 0.2105 0.2105

Parallel
Inheri-
tance

Adjusted
Baseline

Association
Rules - Using
SmoteTomek

0.0386 0.1446 0.2377 0.0208 0.0996 0.2167 0.2632 0.2632 0.2632

Parallel
Inheri-
tance

Baseline Association
Rules

0.0386 0.1446 0.2377 0.0208 0.0996 0.2167 0.2632 0.2632 0.2632

102 APPENDIX B. Experiment Results

Parallel
Inheri-
tance

Adjusted
Baseline

Association
Rules - Using PU
Weighting - Us-
ing SmoteTomek

0.0119 0.0582 0.1307 0.0060 0.0305 0.0729 0.6316 0.6316 0.6316

Parallel
Inheri-
tance

Adjusted
Baseline

Association
Rules - Using PU
Weighting

0.0115 0.0563 0.1269 0.0058 0.0295 0.0706 0.6316 0.6316 0.6316

Parallel
Inheri-
tance

One class
classifica-
tion

Isolation Forest 0.0070 0.0352 0.0831 0.0035 0.0180 0.0439 0.7895 0.7895 0.7895

Parallel
Inheri-
tance

One class
classifica-
tion

Isolation Forest
- Using Smote-
Tomek

0.0070 0.0352 0.0829 0.0035 0.0180 0.0438 0.7895 0.7895 0.7895

Parallel
Inheri-
tance

One class
classifica-
tion

One Class SVM 0.0015 0.0074 0.0176 0.0007 0.0039 0.0096 0.1053 0.1053 0.1053

Parallel
Inheri-
tance

One class
classifica-
tion

One Class SVM
- Using Smote-
Tomek

0.0015 0.0074 0.0176 0.0007 0.0039 0.0096 0.1053 0.1053 0.1053

Shotgun
Surgery

Ensemble Soft Voting - Us-
ing SmoteTomek

0.4000 0.6081 0.7235 0.2778 0.5294 0.7330 0.7143 0.7143 0.7143

Shotgun
Surgery

Boosting CatBoost - Using
PU Weighting

0.4444 0.5973 0.6678 0.3636 0.6257 0.8031 0.5714 0.5714 0.5714

Shotgun
Surgery

Ensemble Soft Voting - Us-
ing PU Weight-
ing

0.3846 0.5957 0.7163 0.2632 0.5109 0.7183 0.7143 0.7143 0.7143

Shotgun
Surgery

Boosting Light GBM 0.3673 0.5644 0.6756 0.2571 0.5031 0.7119 0.6429 0.6429 0.6429

Shotgun
Surgery

Boosting CatBoost - Using
SmoteTomek

0.4242 0.5577 0.6173 0.3684 0.6305 0.8064 0.5000 0.5000 0.5000

Shotgun
Surgery

Boosting XGBoost 0.3810 0.5548 0.6451 0.2857 0.5392 0.7407 0.5714 0.5714 0.5714

Shotgun
Surgery

Boosting XGBoost - Using
SmoteTomek

0.3721 0.5483 0.6415 0.2759 0.5270 0.7312 0.5714 0.5714 0.5714

Shotgun
Surgery

Boosting XGBoost - Using
PU Weighting

0.3721 0.5483 0.6415 0.2759 0.5270 0.7312 0.5714 0.5714 0.5714

Shotgun
Surgery

Boosting XGBoost - Using
PU Weighting
- Using Smote-
Tomek

0.3636 0.5420 0.6379 0.2667 0.5154 0.7219 0.5714 0.5714 0.5714

Shotgun
Surgery

Ensemble Soft Voting
- Using PU
Weighting - Us-
ing SmoteTomek

0.3396 0.5412 0.6617 0.2308 0.4674 0.6817 0.6429 0.6429 0.6429

Shotgun
Surgery

Ensemble Soft Voting 0.3333 0.5357 0.6583 0.2250 0.4592 0.6746 0.6429 0.6429 0.6429

Shotgun
Surgery

Boosting Light GBM - Us-
ing SmoteTomek

0.3404 0.5238 0.6274 0.2424 0.4835 0.6956 0.5714 0.5714 0.5714

Shotgun
Surgery

Boosting Light GBM - Us-
ing PU Weight-
ing

0.3051 0.5098 0.6419 0.2000 0.4224 0.6409 0.6429 0.6429 0.6429

Shotgun
Surgery

Boosting CatBoost 0.3636 0.4909 0.5499 0.3158 0.5745 0.7672 0.4286 0.4286 0.4286

Shotgun
Surgery

Boosting CatBoost - Using
PU Weighting
- Using Smote-
Tomek

0.3636 0.4909 0.5499 0.3158 0.5745 0.7672 0.4286 0.4286 0.4286

103

Shotgun
Surgery

Boosting Light GBM
- Using PU
Weighting - Us-
ing SmoteTomek

0.2800 0.4529 0.5586 0.1944 0.4138 0.6328 0.5000 0.5000 0.5000

Shotgun
Surgery

Adjusted
Baseline

Association
Rules - Using
SmoteTomek

0.1399 0.3092 0.4918 0.0775 0.1973 0.3750 0.7143 0.7143 0.7143

Shotgun
Surgery

Baseline Association
Rules

0.1389 0.3076 0.4901 0.0769 0.1960 0.3730 0.7143 0.7143 0.7143

Shotgun
Surgery

Adjusted
Baseline

Association
Rules - Using PU
Weighting - Us-
ing SmoteTomek

0.1342 0.2997 0.4818 0.0741 0.1896 0.3635 0.7143 0.7143 0.7143

Shotgun
Surgery

Adjusted
Baseline

Association
Rules - Using PU
Weighting

0.1233 0.2767 0.4474 0.0682 0.1763 0.3431 0.6429 0.6429 0.6429

Shotgun
Surgery

One class
classifica-
tion

Isolation Forest
- Using Smote-
Tomek

0.0028 0.0082 0.0197 0.0014 0.0041 0.0100 0.7143 0.7143 0.7143

Shotgun
Surgery

One class
classifica-
tion

Isolation Forest 0.0028 0.0082 0.0197 0.0014 0.0041 0.0100 0.7143 0.7143 0.7143

Shotgun
Surgery

One class
classifica-
tion

One Class SVM 0.0004 0.0012 0.0030 0.0002 0.0006 0.0015 0.0714 0.0714 0.0714

Shotgun
Surgery

One class
classifica-
tion

One Class SVM
- Using Smote-
Tomek

0.0004 0.0012 0.0030 0.0002 0.0006 0.0015 0.0714 0.0714 0.0714

	Title page
	Abstract
	Abstract
	Resumo
	Acknowledgements
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Problem
	Objectives
	Motivation
	Adherence to FUMEC’s Graduate Program in Information Systems and Knowledge Management
	Document Structure

	Mapping Study
	Introduction
	Background
	Code smells
	Machine Learning

	Related work
	Research Method
	Planning
	Research Questions
	Search Strategy
	Studies Selection
	Quality Assessment
	Data Extraction and Classification

	Results
	Overview
	Which code smells are addressed by papers using machine learning techniques for code smells detection?
	Which machine learning techniques are used to detect code smells?
	Which machine learning techniques are the most used for each code smell?
	Which machine learning techniques performs better for each code smell?

	Discussion
	Threats to validity
	Conclusions

	Methodology
	Methods
	Empirical Experiment

	Used dataset
	Benchmark Techniques
	Results Comparison

	Tools

	Results
	Introduction
	Related work
	Background
	Code smells
	Code Smells definition

	Machine Learning

	Experiment Setup
	Experiment Design
	The smells dataset
	Code Smells detection strategy
	Evaluated models
	Assessing the models
	Research questions

	Results
	Overview
	How does the baseline models perform on the selected dataset?
	How the techniques recommended for positive/unlabeled settings perform when compared to the recommended techniques?

	Discussion
	Threats to validity
	Conclusions

	Conclusion
	Bibliography
	Appendix
	SLR Results and Articles
	Experiment Results

