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Resumo
A anotação de papéis semânticas (APS) é uma tarefa do processamento de linguagem
natural que fornece os meios para analisar, do ponto de vista semântico, as informações
expressas através de texto ou fala. O objetivo é capturar e representar os participantes e
as circunstâncias de eventos ou situações descritas no nível sentencial. É tida como um
importante passo para a compreensão da linguagem natural.

A maior parte da pesquisa existente sobre a APS é focada na língua inglesa e, portanto,
considera suas particularidades sintáticas e semânticas. Este fato impede a transposição
direta de seus resultados para outras línguas. Quanto à língua portuguesa, há um pequeno
número de estudos dedicados a esta tarefa, e nenhum deles conseguiu um desempenho
semelhante ao obtido na língua inglesa. Além disso, ao que sabemos, existe apenas um
sistema publicamente disponível capaz de executar a APS automatizada em texto bruto,
o que dificulta a pesquisa e detém o potencial inovador para a língua.

O objetivo desta dissertação é avaliar o desempenho de um anotador de papéis semânti-
cos automático para a língua portuguesa construído considerando técnicas abordadas na
literatura.

Para atingir este objetivo, o primeiro passo consistiu em uma revisão sistemática da
literatura na tarefa de APS que visou identificar as técnicas mais precisas abordadas
na literatura. Com base em seus resultados, desenvolvemos e avaliamos um anotador
de papéis semânticos para a língua portuguesa. Nossa abordagem é independente de
análise sintática e se apóia em uma arquitetura de rede neural recorrente, bidirecional e
profunda. As predições da rede são usadas como a entrada de um algoritmo de análise
neural recursiva global que foi adaptado para a tarefa de APS.

Nosso método superou, de forma consistente, o sistema mais preciso para a língua por-
tuguesa no Corpus do PropBank-Br por uma margem de 3.05 pontos de F1-score, re-
duzindo o erro relativo em 8.74%.

O modelo apresentado nesta pesquisa está disponível publicamente sob licença BSD e
pode ajudar estudos futuros focados na língua portuguesa em tarefas que normalmente
dependem da análise de conteúdo, que vão desde a tradução automática até os sistemas
de perguntas e respostas.

Palavras-chaves: Anotação de Papéis Semânticos, PLN, Aprendizado Profundo, Redes
Neurais Recorrentes, LSTM.



Abstract
Semantic Role Labeling (SRL) is Natural Language Processing task that provides the
means to analyze, from the semantic point of view, the information expressed through
text or speech. Its purpose is to capture and represent the participants and circumstances
of events or situations described at the sentential level. It is considered a major step
towards natural language understanding.

Most of the existing SRL research is focused on the English language, and thus, considers
its syntactic and semantic particularities. This fact prevents a direct transposition of its
results to other languages. Regarding the Portuguese language, there is a small number
of studies dedicated to the task, and none of them achieved a similar performance to that
obtained in the English language. Moreover, to the best of our knowledge, there is only
one publicly available system capable of performing automated SRL on raw text what
hampers research and detain the innovative potential for the language.

The objective of this thesis is to evaluate the performance of an automatic semantic
role labeler for the Portuguese language built considering techniques addressed in the
literature.

To achieve this goal, the first step consisted in a systematic literature review on SRL
task that intended to identify the most accurate techniques addressed in the literature.
Based on its results, we developed and evaluated a semantic role labeler of raw text for
the Portuguese language. Our approach is independent of syntactic parsing and relies on
a deep bidirectional recurrent neural network architecture. The network predictions are
used as the input of a global recursive neural parsing algorithm that was tailored for the
SRL task.

Our method consistently outperformed the previous state-of-the-art system for the Por-
tuguese language on PropBank-Br corpus by a margin of 3.05 𝐹1-score points, reducing
the relative error in 8.74%.

The model presented in this research is publicly available under BSD license and may help
future studies focused on the Portuguese language in tasks that are typically dependent on
content-analysis, ranging from Machine Translation to Question and Answering Systems.

Keywords: Semantic Role Labeling; NLP; Deep Learning; Recurrent Neural Networks;
LSTM.
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1 Introduction

Natural language processing (NLP) is a subfield of artificial intelligence that in-
vestigates computational techniques to analyze and represent, at varied linguistic levels,
the languages that human uses naturally (1). One of its primary aspirations is to under-
stand, with human-like precision, the message expressed in natural languages. This goal,
if achieved, may benefit any task that relies on content-analysis, including question and
answering systems, news-gathering, voice activation, and automated text summarization.

The challenge, however, is not small. Comprehending the meaning of the text
(the semantics) requires the ability to deal with language-specific issues and, ultimately,
depends on cognition - the mental process of acquiring knowledge and understanding
through reasoning, experiences, and senses (2). It encompasses phenomena that are not yet
fully known by researchers and, therefore, are difficult to be simulated in a computational
environment.

Among the NLP tasks dedicated to the semantic analysis, the semantic role label-
ing (SRL) is of particular interest for this work. Also known as shallow semantic parsing,
the purpose of this task is to capture and represent the participants and circumstances of
events or situations described at the sentential level (3). Grossly, it allows providing an-
swers to questions such as who did what to whom where when and how in text or speech.
Events, in this context, are triggered by predicates, which are usually represented by
verbs. The participants, in turn, are denoted by words or groups of words (constituents)
known as arguments, each of them playing a different abstract role with respect to a given
predicate (4).

Consider the sample sentence "John is building a new house in downtown". In this
case, the predicate build evokes a construction event that, implicitly, requires arguments
that hold semantic roles such as the constructor (John), the thing built (a new house),
and the construction place (in downtown). The idea is that only by the presence of these
semantic roles, an event may produce a minimal unit of meaning in its interlocutor.

The annotation of semantic roles has proven to be useful in several NLP applications(5,
6, 7, 8). In a Question and Answering system, for instance, (9), a factoid question may be
formulated as what kills bacteria?. A semantic approach searches at the available corpus
trying to find sentences that contain predicates such as kill whose patient is bacteria. The
sentence elements that play the semantic role of the agent are natural candidate answers.

Since the first automatic SRL approach, presented in the seminal work of (3), the
task has been tackled through the use of statistical machine learning techniques (ML). It
is usually considered a supervised classification problem where the objective is to choose,
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from a pre-defined set of possible semantic role labels, the proper ones for each constituent
of a sentence. Unsupervised techniques, although rare, can also be employed. In this case,
the goal is to discover, from raw text, groups of semantic roles, which are determined by the
application of a similarity or distance measure. The resulting clusters are then analyzed
by domain specialists to determine their meaning. At last, semi-supervised approaches
are considered an option under circumstances where there is not enough annotated data
to generalize a supervised ML model. It may employ either self-training algorithms, or
unsupervised techniques in order to expand the input data for supervised models (4).

The majority of the SRL techniques described in literature utilizes the syntactic
elements of a sentence as input features to their ML models. This choice is supported by
the linking theory presented by (10) which states that the predicates that share a similar
syntactic behavior tend to exhibit a similar meaning, and consequently, share the same
predicate-argument structure. It points to a mutually dependent structure which is based
on the observation of the syntactic-semantic occurrence patterns in the English language.
Some of the most common syntactic representations are constituency trees, dependency
trees, and shallow syntactic trees.

Different studies have corroborated the benefits of using this syntactic information
in SRL task (11, 12, 13). A possible drawback is that the use of syntactic information
creates a dependency on external tools (syntactic parsers). In this sense, their eventual
errors, as expected, are propagated to the SRL model, creating noise and affecting its
performance.

As a typically supervised NLP problem, the task requires vast amounts of anno-
tated data. The Proposition Bank, or simply PropBank (14), is the most popular lexical
resource for the English language. It adds a hand-tagged semantic layer on top of con-
stituency trees provided by the Penn TreeBank corpus (PTB), thereby taking advantage
of the linking theory. This corpus was conceived to support ML approaches and therefore
presents a significant size, with approximately one million annotated tokens in its first
version.

The success of this corpus inspired similar versions on several languages. Its Por-
tuguese counterpart is known as PropBank-Br (15) and, in large part, follows the original
formalism applied by the English version. It was built on top of the Brazilian portion
of Bosque, a section of Floresta Sintá(c)tica treebank (the equivalent to the Penn Tree-
Bank for the Portuguese language). Comparatively though, the Portuguese version may
be considered a small sized corpus. It accounts for only the seventh part of the annotated
sentences contained in the English version.

Hundreds of studies investigated the SRL task and its applications, particularly
for the English language where one may find the highest number of systems and results.
Regarding the Portuguese language though, the scenario is inverted and SRL task is still
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in early stages. Although some methods have been proposed, none of them achieved a
similar performance to that obtained in the English language. Moreover, to the best of our
knowledge, there is only one system capable of performing automated SRL on raw text
for the language. In the following lines, we highlight the most relevant studies conducted
up until now.

Bick(16) was the first to investigate the SRL task for the European Portuguese
language. Their rule-based system (PALAVRAS) uses a set of heuristics to map and dis-
ambiguate semantic roles. It employs 500 manually created rules to extract 35 possible
semantic roles. Although limited by the manual effort it demands, the author reported
excellent results with an F1-score around 88 points. His method though, was evaluated on
a very small dataset comprised of 2500 words taken from the European part of Foresta
Sintá(c)tica corpus. This fact, when combined to the high granularity produced by their
semantic roles, may have biased the performance analysis. Moreover, the system is dis-
tributed under a proprietary license and is not publicly available for NLP community.

Alva-Manchego e Rosa(17) were the first to investigate the SRL task for the Brazil-
ian Portuguese (BP). Their preliminary approach intended to produce a benchmark for
future studies. The supervised system utilized classifiers such as Naive Bayes and Decision
Trees that were trained on an early version of PropBank-Br. The evaluation though, re-
lied on gold-standard syntactic trees provided by the corpus what produces an inexistent
condition under real-usage circumstances.

The first fully functional semantic role labeler for the BP was introduced by Fon-
seca e Rosa(18). Their system, NLPNET, trained on PropBank-Br corpus, was inspired
by the approach of Collobert et al.(19) that obtained a reasonable performance using
the English PropBank. It uses word vector representations as input features of a con-
volutional neural network architecture. Their best single training session yielded 65.13
F1-score points, a performance that is almost 10 F1-score points behind the original sys-
tem. The author points that a possible cause may be related to the scarcity of data on
PropBank-Br corpus. To the best of our knowledge, this is the only SRL system for the
BP whose source code is publicly available.

1.1 Research Problem
Considering the context exposed above, the following research question emerges:

What is the accuracy of an automatic semantic role labeler for the Portuguese
language built considering techniques addressed in literature?
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1.2 Objectives

1.2.1 Main Objective

The main objective of this thesis is to evaluate the performance of an au-
tomatic semantic role labeler for the Portuguese language built considering
techniques addressed in the literature

1.2.2 Specific Objectives

∙ OBJ1: Identify the most accurate semantic role labeling techniques described in
the literature.

∙ OBJ2: Analyze the results of an automatic semantic role labeler for the Brazilian
Portuguese built considering techniques addressed in the literature.

1.3 Motivation
Due to the existing opportunities in a range of areas, there is a growing interest of

foreign investors in emergent economies such as Brazil, an active member of the BRICS
(alongside Russia, India, China and South Africa) and the ninth-largest economy in the
world (20).

For any external market agent, the local language understanding can represent
competitive advantages as it enables informed and consequently, better decision-making
process. The speed of information acquisition and processing is also determinant since it
provides the chance to take the initiative and act before competitors. Thus, there is a
latent necessity to support this interest with new methods and techniques, an objective
that can only be achieved through research.

The SRL task is a central technique in this context. It has been successfully em-
ployed on several tasks such as question and answering systems (21, 9), open information
extraction (6), automatic text summarization (5), and machine translation (7). Portuguese
language studies in this field, though, are scarce, particularly when compared to the En-
glish language. Considering that the majority of the existing techniques are based on
supervised machine learning, the lack of lexical resources combined with the scarcity of
freely available tools are limiting factors that hamper the research process and consecu-
tively detain the innovative potential for the Portuguese language. We seek to contribute
to changing this scenario by freely releasing all the artifacts produced by this research.
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1.4 Adherence to Graduate Program
The FUMEC’s graduate program in Information Systems and Knowledge Man-

agement is focused on applied research. The program is organized into two main streams:
Technology and Information Systems and Information and Knowledge Management. The
multidisciplinary approach is a fundamental concept to the program.

This research investigates the performance in semantic role labeling task for the
Portuguese language. It is a multi-purpose semantic analysis tool that holds the potential
to leverage any task that relies on content-analysis. Our focus is on Decision Support
Systems topic under Information Systems area in compliance with FUMEC’s graduate
program.

The multidisciplinary character arose from the purpose of the research that may
enable future applications in several fields of study.

1.5 Document Structure
We structured this thesis in 4 chapters. Chapter 1 presented the introduction.

Chapter 2 presents a systematic literature review on semantic role labeling task developed
during the thesis project definition. In chapter 3 we describe our semantic role labeler and
discuss the experimental results. Lastly, chapter 4 concludes our work.

1.6 Communications of this Thesis
We have communicated the research presented in this thesis through journal pa-

pers. In the following, we mention the publications according to the chapters covering the
respective contribution.

∙ Chapter 2: FALCI, D.H.M.; PARREIRAS, F.S. Semantic Role Labeling: A System-
atic Literature Review. Computer Speech and Language, 2017. [Under Considera-
tion].

∙ Chapter 3: FALCI, D.H.M.; PARREIRAS F.S. Applying Recurrent Neural Networks
into Semantic Role Labeling for the Portuguese Language. Cognitive Systems Re-
search, 2018. [Under Consideration].
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2 Systematic Literature Review

2.1 Introduction
Semantic Role Labeling (SRL) is a Natural Language Processing task (NLP) that

intends to reveal the predicate-argument structures described in each sentence of a docu-
ment. This shallow semantic representation enables computational approaches to capture
and represent events, identifying their participants and circumstances (3). It is a major
component towards natural language understanding and has been successfully employed
in several NLP applications such as question and answering systems (21, 9), automatic
text summarization (5), open information extraction (6) and co-reference resolution (8).
SRL is particularly useful when applied to Information Extraction activity (22) - extract-
ing limited kinds of semantic content from text and transforming it into structured data
- and may benefit any task that relies on semantic knowledge (23).

Since earlier approaches, in an unceasing search for the most accurate methods,
hundreds of studies employed complex techniques that combined elements such as several
machine learning methods, feature selection procedures, syntactic representations, differ-
ent lexicons and formalisms, processing stages and others. The overall accuracy though, is
still around 83%, illustrating how hard is the task and how much room for improvement
there is in this research field.

In this scenario, emerges the following research question: What are the SRL tech-
niques addressed in the literature and what is their accuracy? In order to answer this
question, we undertake a literature review, revealing research gaps and common practices
as well as clarifying the state-of-the-art in this research field. To the best of our knowledge,
this is the first study of this kind devoted to this task.

The remainder of this paper is organized as follows: Section 2.2 provides the tech-
nical background of SRL task. Section 2.3 describes our methods and materials. Section
2.4 presents our results while section 2.5 discusses them. Section 2.6 examines our limi-
tations and threats to validity. At last, the conclusions and future work are presented in
section 2.7.



Chapter 2. Systematic Literature Review 17

2.2 Background

2.2.1 Linguistics

In linguistic theory field, semantic roles, also known as semantic case or thematic
roles, are defined as the study of the existing syntactic-semantic relationship between
arguments and predicates in a sentence (4). Such predicates are usually represented by
the verbs in a sentence and serve as event triggers while its arguments point out to actors,
objects, and circumstances related to these events. The sentence (1) illustrate the concept.
The verb ’open’ triggers an opening event, where the argument ’John’ play the role of the
opener and the argument ’door’, the thing opened.

(1) John opened the door

Semantic roles were one of the first linguistic models, introduced by Panini around
the 6th century BC in his Karaka theory for the Sanskrit language (24). Since then, few
studies were undertaken, and the subject was almost forgotten until its re-introduction
in modern linguistics by Fillmore(25) in his Case Grammar. In his work, the author
claims that sentences, no matter its language, are composed of verbs and its respective
arguments which may be classified into six universal semantic roles described in Table 1.
In his theory, each semantic role is optional and may occur only once per proposition,
while each constituent cannot assume more than one role simultaneously. The author also
observes that the structures that modify the main verb such as negation, auxiliary verbs
and adverbs are independent of the semantic role structure, not affecting it.

Table 1 – Original set of semantic roles of case grammar

Semantic Role Definition

Agentive Entity, instigator of the action or state described
by the verb.

Instrumental Inanimate force or object causally involved in the action or state
described by the verb.

Dative Entity, affected by the state or action described by the verb.

Factive Object or result from the action or state described
by the verb.

Locative Place or spatial orientation of the action or state described
by the verb.

Objective Thing affected by the action or state determined by the verb.
Adapted from Fillmore(25)

The sentences in (2) exemplify the semantic role structure obtained by the appli-
cation of Fillmore’s universal semantic roles. It is noticeable that in the three sentences,
despite its verbal time, morphologic and syntactic functions, the event structure remains
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unchanged. The predicate open, in all sentences, accepts three arguments: Jonh as AGEN-
TIVE, the door as OBJECTIVE and key as INSTRUMENTAL. At the same time, we
have three different syntactic structures. In the sentence (2a), John is the subject while in
(2b) and (2c) we have the phrasal components door and key as the subjects, respectively.

(2) a. [John𝐴𝑔𝑒𝑛𝑡𝑖𝑣𝑒] opened the [door𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒] with the [key𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙]

b. The [door𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒] was opened with the [key𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙]

c. The [key𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙] will not open the [door𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒]

Fillmore’s Case Grammar concepts, though, contained ambiguity. In practice, even
when applied in simple sentences, the universal set of semantic roles could mutually
overlap, making impossible to determine its semantic function. This fact inspired scientific
discussions in the years that followed, and several authors attempted to identify a method
to define a reliable set of universal semantic roles (26, 27, 28, 29). The work of Cook(26)
for instance, explores Case Grammar theory, eventually expanding it to a set composed
of nine thematic roles that are depicted in Table 2.

Table 2 – Current set of universal semantic roles

Semantic Role Definition

Agent Instigator or main cause of the event
Experiencer Affected by the action
Instrument The immediate cause of the event

Object Entity that changes with the event
Source Starting point of the action
Goal Final point of the action
Local The location where the event occurs
Time The moment when the event occurs

Benefactive The beneficiary of an event
Adapted from Cook(26)

In an attempt overcome the limitations of his Case Grammar, Fillmore went in
an alternative direction and, instead of working with universal semantic roles or gener-
alization, proposed its specialization, introducing a theory known as Frame Semantics
(30, 31). The central idea of his theory is that the meaning of the words is strictly de-
pendent on the frames where they have been used. In this context, frames are schematic
representations of events or situations that hold a template of specialized thematic roles,
evoked in the presence of a particular set of predicates. Consider the sentences in (3).
The verbal predicates buy and sell, although different in perspective, are responsible for
triggering the Commerce frame. It implicitly requires semantic roles such as the seller, the
buyer, the goods, and the amount spent. Our inherent knowledge about its attributes and
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typical interactions enable us to identify, process, and understand the multiple semantic
roles of each participant in the event.

(3) a. [John𝐵𝑢𝑦𝑒𝑟] bought a [car𝐺𝑜𝑜𝑑𝑠] from [Mary𝑆𝑒𝑙𝑙𝑒𝑟]

b. [Mary𝑆𝑒𝑙𝑙𝑒𝑟] sold the [car𝐺𝑜𝑜𝑑𝑠] to [John𝐵𝑢𝑦𝑒𝑟]

Levin(10) explores the linking theory that is based on the idea that predicates that
share a similar syntactic behavior tend to exhibit a similar meaning. Consequently, this
synonymy relationship causes similar predicates to trigger the same events or semantic
frames, sharing its syntactic structures in a mutually dependent framework. Thus, she
suggests that syntactic elements are dominant factors for determining the semantic roles
of the arguments of a given verb. In her detailed work, she analyzed the verb occurrence
patterns in English language and classified 3100 verbs into 47 classes and 193 subclasses.
The classification took into account the possible syntactic alternations of the semantic
arguments accepted by each verb so that in the final model, semantic and syntactically
similar verbs belong to the same class.

The class 35 for instance (see Figure 1) groups verbs related to ’searching’. The
verbs in these class usually have three possible syntactic realizations to express their
arguments, but different subclasses use different subsets of these patterns. The subclass
35.1 intends to describe the ’hunt verbs’ that may exhibit all the three possible syntactic
realizations. Subclass 35.4, on the other hand, is dedicated to ’investigate verbs’ and can
only use one out of three syntactic alternations.

Her work is known as Levin classes and is particularly relevant in linguistics field
because of her discussion about the existing link between syntactic and semantic elements
in a sentence, a subject that, although not yet fully understood by scholars, inspired
subsequent studies especially in the field of computational linguistics (32, 33).

2.2.2 Lexical resources

Considering SRL research, two corpora for the English language are widely em-
ployed: FrameNet and PropBank. Given their importance, these resources are presented
individually, each on its subsection. Lexical resources such as NomBank, OntoNotes,
VerbNet, and WordNet are either applied as the main semantic resource or to enrich
the knowledge base available for computational approaches. The subsection Another Re-
sources offer an overview of them. At last, the subsection Other Languages, as the name
suggests, outlines the resource availability for other languages.



Chapter 2. Systematic Literature Review 20

Figure 1 – Levin classes - Subclasses for the verbs of searching

NP - indicates a noun phrase. In this sense, NP1 + Verb + NP2 + in + NP3 could be used
with the verb hunt in a sentence such as ’John hunt a doe in the forest’. Notice that NP1, NP2,

and NP3 are respectively reserved for the roles of agent, patient, and place.

2.2.2.1 FrameNet

The Berkley FrameNet Project, presented in Baker, Fillmore e Lowe(34), is a hand-
tagged lexicographical resource following the Frame Semantics theory. It is comprised of
a collection of frames and their corresponding set of semantic roles (frame elements) and
predicates (lexical units) annotated on top of the British National Corpus1. FrameNet
contains more than 7,000 annotated predicates, distributed in approximately 1,000 frames.
The resource also holds more than 200,000 annotated sentences 2, resulting in an average
value of 20 annotated sentences per predicate (35).

Its frames are organized in a hierarchically-related way, with relationships such as
inheritance and usage. The sentences (4), (5) and (6) are examples of the frames Residence,
Visiting and Temporary stay respectively. The latter one establishes a semantic inheritance
relationship with the former ones, in a way that what is true for the parent frame is also
true for the child frame. It is also noteworthy that FrameNet also maps nominal predicates,
in contrast to other lexical resources that are exclusively concerned with verbal predicates.
Sentence (5) provides an example where the predicate visit is presented in its nominal
form. Another relevant characteristic of this lexical resource is that it does not contain any
syntactic annotation. This fact is due to its general purpose, where not only computational
domains but also pure linguistic studies must be contemplated. In this sense, FrameNet
attempts to avoid the computational bias focusing on its primary goal: semantics.
1 Avaliable at <http://www.natcorp.ox.ac.uk>
2 The current annotation status is available at <https://framenet.icsi.berkeley.edu/fndrupal/current_

status>

http://www.natcorp.ox.ac.uk
https://framenet.icsi.berkeley.edu/fndrupal/current_status
https://framenet.icsi.berkeley.edu/fndrupal/current_status
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(4) [John𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡] still lives [with his parents𝐶𝑜−𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡] [in San Francisco𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛].

(5) [Harry’s𝐴𝑔𝑒𝑛𝑡] landmark visit [to Iraq𝐸𝑛𝑡𝑖𝑡𝑦] started [yesterday𝑇 𝑖𝑚𝑒]

(6) [For a few weeks𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛] [Mary𝐺𝑢𝑒𝑠𝑡] lodged [at a hotel𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛]

2.2.2.2 PropBank

The Proposition Bank or PropBank3 (36, 33), is a lexical resource based on Levin’s
classes and in the refinements made on them (37). Since its first version, PropBank in-
tended to allow the usage of computational methods and syntactic-semantic structures.
The inspiration was the success achieved by the Penn TreeBank II project (PTB) that
allowed the development of powerful syntactic parsers for the English language based on
machine learning techniques. For this reason, and taking advantage of the linking theory,
PropBank added a semantic layer on top of the constituency trees, already existent in
PTB. Its first version had about one million sentences annotated on top of the Wall Street
Journal section of the PTB corpus.

The formalism implemented in PropBank though diverge from the one adopted
by FrameNet. First of all, PropBank is only concerned with predicates in its verbal form.
Second, its core arguments are represented by an abstract and optional set of arguments,
numbered from Arg0 to Arg5 that are strictly dependent on each verb meaning. With the
exception of the proto-roles Arg0, that is usually reserved for the Agent, and Arg1 that
indicates the Patient or Theme in a proposition, no inferences can be made for the rest
of the arguments when comparing predicates. The table 3 exemplifies the PropBank roles
for some predicates4.

Table 3 – PropBank - verb specific roles

Semantic Role Open Buy Sell
Arg0 Opener The buyer The seller
Arg1 Thing opened Thing bought Thing sold
Arg2 Instrument The seller The buyer
Arg3 Benefactive The price The price
Arg4 – Benefactive Benefactive
Arg5 – – –

PropBank also defines a set of functional arguments (ArgM ) that are common to
all predicates. They intend to indicate adjunct arguments such as time, place and manner
and can be merged with the verb-specific roles from Arg2 to Arg5. The Table 4 lists the
3 More information can be found at <http://verbs.colorado.edu/%7Empalmer/projects/ace.html>
4 Semantic roles were taken from <http://verbs.colorado.edu/propbank/framesets-english-aliases/>

http://verbs.colorado.edu/%7Empalmer/projects/ace.html
http://verbs.colorado.edu/propbank/framesets-english-aliases/
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functional arguments and their respective meaning while sentence (7), exemplifies the
PropBank annotation formalism.

Table 4 – List of PropBank functional arguments

Semantic Role Meaning Examples
ArgM-LOC Location the hospital, in Dallas
ArgM-TMP Temporal now, this summer
ArgM-MNR Manner clearly, very fast
ArgM-NEG Negation not, n’t
ArgM-CAU Cause In response
ArgM-DIR Direction to production, to USA
ArgM-PNC Purpose to pay for, to acquire
ArgM-EXT Extension 30 points, at 200
ArgM-DIS Discursive marking for instance, additionally
ArgM-REC Reciprocity each other
ArgM-PRD Secondary predication to become a doctor
ArgM-ADV Adverbials none of the above

(7) [John𝐴𝑟𝑔0] sold [the car𝐴𝑟𝑔1] [to Mary𝐴𝑟𝑔2] [last month𝐴𝑟𝑔𝑀−𝑇 𝑀𝑃 ]

2.2.2.3 Another Resources

VerbNet (32, 38) is a lexicon that extended the original coverage of Levin classes to
more than 470 classes distributed in four hierarchical levels. Such corpus adds a represen-
tation of the possible syntactic alternations assumed by the arguments of each predicate
(only verbal ones, as the resource name suggests) and their arguments 5. It also adds se-
lectional restriction information6 for each verb class what is useful while disambiguating
verb senses.

Baker e Ruppenhofer(39) offers a detailed comparison between the VerbNet and
the FrameNet. In this study, the authors analyzed aspects such as syntactic realizations,
semantic classes and hierarchical structures provided by both formalisms. Their result
indicates that despite their comparable verb coverage, the FrameNet formalism produces
more consistent categories and richer relationships among them.

As mentioned in the previous subsection, PropBank is only concerned with verbal
predicates what may restrict its usage. The NomBank project (40) attempts to fill this
gap by annotating the nominal predicates skipped in PropBank sentences. The annota-
tion guidelines are essentially the same ones applied in the PropBank, making of it a
complementary corpus for PropBank.
5 The full semantic roles list is available at <https://verbs.colorado.edu/~mpalmer/projects/verbnet.

html>
6 The kind of concept an argument requires: i.e., Something that is edible is the selectional restriction

for the argument Theme of the predicate eat

https://verbs.colorado.edu/~mpalmer/projects/verbnet.html
https://verbs.colorado.edu/~mpalmer/projects/verbnet.html
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WordNet (41) is a lexical resource that groups adjectives, adverbs, nouns and
verbs into 117,6597 sets of synonym classes (synsets) interlinked through their lexical and
semantic relations. Nouns and verbs are hierarchically organized observing hypernymy
relations which enable the following kind of inference: if armchair is a kind of chair and
chair is a piece of furniture then, an armchair is a piece of furniture. For each mapped word,
it provides definitions and example sentences. In the NLP field, this corpus is particularly
useful in tasks such as word-sense disambiguation, information retrieval, and information
extraction. Considering the SRL task, the synonymy relations may improve the overall
semantic understanding of a sentence, disambiguating predicates and argument meanings
(42).

OntoNotes (43) is a multilingual corpus (English, Chinese, and Arabic) composed
by various genres of text, from news to phone talks, annotated with predicate-argument
structures, word senses, and co-reference resolution schemes. Regarding the predicate-
argument formalism, OntoNotes was inspired by PropBank project, and therefore, follows
its guidelines. Another similarity is that it employs the same syntactic representation
utilized in PropBank: Constituency trees using the annotation guidelines of PTB). Word
senses for verbs and nouns are linked to hypernymy structures that resemble the ones
seen on WordNet. The authors also claim that the corpus has a 90% agreement among
the annotators.

2.2.2.4 Other Languages

The lexical resources presented so far are targeted at the English language. They
enabled successful SRL approaches, creating a favorable environment for its application
in several NLP tasks. This fact motivated the development of equivalent corpora in other
languages.

The following languages produced their own corpus built considering the FrameNet
formalism: Portuguese (44), French (45), German (46), Swedish (47), Spanish (48), Chi-
nese (49), Japanese (50), Korean (51) and Polish (52).

The PropBank formalism was also followed in languages such as Portuguese (53),
Arabic (54), Chinese (55), Finnish (56) and Hindi (57).

2.2.3 Machine learning

Since earlier approaches, automatic SRL has been performed through the applica-
tion of statistical machine learning techniques (4, 22). Machine learning (ML) is a subfield
of Artificial Intelligence (AI) concerned with the study of the algorithms and methods that
can be used to detect patterns from a dataset. The goal is to perform predictions from
7 The current WordNet status may be found at <http://wordnet.princeton.edu/wordnet/man/wnstats.

7WN.html#toc2>

http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html#toc2
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html#toc2
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new data (predictive models) or to describe the data behavior (descriptive models), al-
lowing systems to learn from data samples or past experiences even not being explicitly
programmed for a task (58, 59, 60). ML algorithms can be classified according to its
corresponding learning method into the following categories: Supervised, unsupervised,
semi-supervised and reinforcement (see Figure 2 for a taxonomy).

Supervised learning operates through the observation of input-output pairs, learn-
ing a model capable of relating them both (58). For this reason, such techniques require
labeled data (or the correct output) while inferring (training) the model. Accordingly
to their training strategies, one may partition the supervised learning models into two
distinct sub-categories: Generative and Discriminative models (61). Generative models
attempts to explain how the data was generated describing the joint probability distribu-
tion 𝑝(𝑋, 𝑌 ), where 𝑋 and 𝑌 are sets of observable (the input) and hidden (the output)
variables, respectively. Discriminative models, on the other hand, calculates the condi-
tional probability 𝑝(𝑌 |𝑋) directly, concentrating its efforts on modelling the boundary
between the classes in 𝑌 known as the decision boundary (59).

The unsupervised learning requires a distinct approach. It consists of discovering
patterns from a dataset without providing any other explicit information (58). Therefore,
this technique does not require labeled data, in contrast to the supervised learning models.
Clustering and dimensionality reduction are popular examples of unsupervised learning
techniques. The clustering objective is to partition a dataset into a defined number of data
segments in a way that maximizes the number of elements distributed among clusters and
minimizes the elements inside of each one of these clusters. Dimensionality reduction in
turn, aims at finding the smallest subset of variables that best describes the data behavior.
It is usually applied in feature selection or feature extraction procedures. The purpose is
to reduce the processing time and storage space required (62).

In semi-supervised learning, which falls between supervised and unsupervised tech-
niques, the models typically combine the usage of big unlabeled and small labeled datasets
to achieve proper generalization or to acquire new features that may improve the model’s
accuracy (63). Techniques such as self-training or bootstraping are some of the most
popular examples.

Reinforcement learning is different from the previous approaches presented so far.
Instead of requiring labeled examples from the dataset or detecting patterns on unlabeled
data, it requires evaluation functions that provide the feedback about a given sequence of
actions, so the model can reshape the actions taken in order to maximize a reward notion
(60, 58). As with the supervised and unsupervised, reinforcement learning approaches are
categorized as Markovian or Evolutionary processes.
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Figure 2 – A taxonomy of machine learning algorithms

Source: Adapted from Nicolas(59)

2.2.4 Automatic Semantic Role Labeling

This section describes the procedures adopted while performing the SRL task and
is divided into three subsections: syntactic representations and features, processing stages,
and evaluation.

2.2.4.1 Syntactic Representations and Features

Since early approaches, the automatic SRL research relied on the hypothesis that
the possible syntactic configurations of a constituent in a sentence are determinant factors
in evaluating its semantic function (Linking theory). Thus, given a sentence, a crucial step
in SRL systems is to extract its syntactic representation whose output is then used as
features that model the mentioned relationship.

Two common syntactic views are those based on constituency and dependency
grammars. Figure 3 exemplifies their structural notation applied in the same sentence.
The answer to which syntactic view provides better results is still a matter of debate in
scientific inquiry (4).

In the constituency-based representation, a sentence is broken into a tree of sub-
phrases where its non-terminal nodes hold the phrase type and the terminal nodes, their
morphological categories (N for a noun, VB for verbs, and so forth). The sub-phrases,
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according to the constituency grammar, may be classified into phrase types8 such as noun
phrases (NP) and verbal phrases (VP). The hierarchical relationship within a tree deter-
mines which constituents are modified and those who act as modifiers, disambiguating the
sense of sentences. Constituency trees are usually obtained through probabilistic parsers
such as that of Collins(64) or Charniak e Johnson(65).

In dependency trees, the words are connected according to their dependency re-
lationship. In this case, each word is a node, and the edges across the nodes map their
dependencies. In the example (see Figure 3), the verb "broke" invokes a dependency rela-
tion with the words "window" and "John" where the first is qualified as a direct object and
the second classified as its subject. The word window also evokes a dependency relation
to the determiner the.

Dependency trees, on average, contain fewer nodes than constituency trees since
there are no intermediary levels. It is simpler while it offers deep syntactic information
what represents a notable aspect from a computational perspective. Dependency-based
representations may be extracted from the output of a constituency-based parser through
the usage of rule-based systems (13). However, dependency trees can also be extracted
directly from text with parsers such as Nivre, Hall e Nilsson(66) and McDonald et al.(67).

Figure 3 – Different syntactic representations for the same sentence

Shallow syntactic parsers (also known as chunkers) may be understood as a simpli-
fied version (and cheaper, from a computational perspective) of a constituency parser (full
parser). The basic difference between these representations is that the chunker captures
information that responds to just one level of constituency trees (NP, VP, PP, ADVP,
ADJP, and so forth.), generally coupled with the IOB tagging scheme (68, 69).

Gildea e Jurafsky(3) were the first to describe a SRL system and their work,
based on the FrameNet corpus, explored the syntactic-semantic relationship through con-
8 A complete set of constituency tree labels used in Penn TreeBank may be found at <http://goo.gl/

ghgk17>

http://goo.gl/ghgk17
http://goo.gl/ghgk17
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stituency trees extracted by the Collins parser (64). Their main contribution stands for
the core set of features they described:

∙ Phrase type: The syntactic category of a constituent (noun phrase, prepositional
phrase, adverbial phrase, and so on.)

∙ Governing category: Determines, for noun phrases, whether an S or VP, is the
closest superior node in the constituency tree.

∙ Parse tree path: Indicates the syntactic relation between the predicate and the
argument candidate. It is represented as the path in the tree comprised of the
existing phrase types and their respective directions (up or down in the tree).

∙ Position: Registers the target constituent position concerning the predicate in a
sentence (before or after).

∙ Voice: Indicates whether the verb is in passive or active voice.

∙ Head word: The head word of a constituent.

Subsequent studies kept these features, adapting them when necessary to different
syntactic representations. These studies also introduced new features based on the mor-
phological information. Within a short period, the feature templates could be counted on
hundreds (70, 71, 72, 73, 74, 75). Although under complementary perspectives, Surdeanu
e Turmo(72), Màrquez et al.(76) and Park e Rim(77) classified the features utilized in
SRL into six categories, according to their goal: Argument structure, argument context,
predicate structure, predicate context, relationship modeling and sentence structure.

Argument and predicate structures are concerned with the internal syntactic struc-
ture of a candidate argument or predicate, respectively. Argument and predicate contexts
represent the features intended to capture the structure of the elements surrounding the
target candidate argument or predicate. Relationship modeling, on the other hand, groups
the features that attempt to capture the relationship between the predicate and the
candidate-argument. At last, sentence structure features are concerned with the proper-
ties shared by the constituents in a sentence.

The traditional feature engineering process is time-consuming and requires lin-
guistic knowledge and intuition from the researcher (78). This fact inspired Collins e
Duffy(79) who introduced a technique known as Tree Kernels. It automatically analyzes
syntactic patterns in constituency trees, converting them into real-valued vectors. This
embedded syntactic representation inherently carries several attributes and relationships
that until then, should be explicitly captured by the researcher in a manual process. Sev-
eral studies explored this technique for relationship modeling features (80, 81), argument
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and predicate context features (82) and even as the only syntactic representation for the
SRL classifier (78). These techniques have reported reasonable results, particularly when
exposed to smaller datasets. However, the time required for training is exponential what
makes it infeasible when using large lexical resources.

Collobert e Weston(83), Collobert et al.(19) and Zhou e Xu(84) expanded the
concept and chose not to use any syntactic structure. Instead, they utilize distributional
semantic models that transform the words of a given vocabulary into low-dimensional real-
valued vectors in a way that similar words produce similar vectors (85, 86, 87, 88, 89, 90).
These word vectors are referred to as word embeddings. The theory is based on the idea
that the words that co-occur in the same context tend to exhibit a similar meaning.
These studies employed the word embeddings as input features of deep neural network
architectures (convolutional neural networks and recurrent neural networks). Their results
point out to an almost state-of-the-art performance while offering a dramatic reduction
in processing time (84).

Jr e Martin(91), FitzGerald et al.(92), and Fonseca e Rosa(18) also investigated the
combination of word embeddings and deep neural network models in SRL task. This time,
however, they also aggregated traditional syntactic features to their systems (dependency
trees). This combination also yielded strong results.

2.2.4.2 Processing Stages

The SRL may be modeled as a sequence labeling task that is arranged in a pipeline
architecture. Thus, the system is usually realized as a sequence of smaller and simpler
steps. In such setting, the output of the previous stage serves as the input of the next
one. In this section, we describe the particular goal of each of these optional processing
stages ( see Figure 4).

Predicate Identification (PI) is the first and more straightforward stage in the
SRL pipeline. As the name suggests, its goal is to identify the predicate tokens in a given
sentence. Regarding verbal predicates, this task may be reduced to the application of a
Part of Speech tagger (POSTagger) which in turn, reveals the morphologic structure of a
sentence. However, nouns, depending on its usage context, may act as a predicate evoking
frames or events in the same way as the verbal predicates. In this case, it is treated as a
binary classification problem that indicates whether a given token is a predicate or not
(93, 94).

Predicates may also evoke different senses. The predicate disambiguation (PD)
stage stands for the act of discovering the correct sense of a predicate. The predicate
run, for instance, may indicate the act of moving rapidly when applied in a sentence like
John runs fast. It may also assume the control sense in a sentence such as John runs
the company. Each sense of the predicate evokes a different semantic frame. Predicate



Chapter 2. Systematic Literature Review 29

disambiguation is typically addressed as multi-class classification problem (95, 96, 97). In
the early years of SRL though, this task was not popular, and studies used to ignore it,
selecting the most common sense observed in the dataset. These two tasks (identification
and disambiguation) can also be fused and performed in a single predicate processing
stage (PID) (98).

Semantic arguments are comprised of multiple words. For instance, in the sen-
tence 7 the multi-word expression last month determines a single argument (ArgM-TMP).
The argument identification stage (AI) is concerned with the detection of the predicate-
argument boundaries such that a system recognizes the span of the words that constitute
each argument in a sentence. Once again, a binary classification mechanism is the regular
choice. It indicates whether a token or constituent in a sentence acts as an argument or
not (78).

Xue e Palmer(71) analyzed the PropBank corpus and found that the majority of
the words in a sentence are not arguments to a given predicate. This fact inspired the
authors to create a pruning heuristic (PRU) based on a set of grammar rules that re-
duce the search space by automatically removing the constituents that are unlikely to
be considered as arguments. The idea is to act as a pre-processing stage to the argu-
ment identification stage, alleviating the processing requirements for the SRL task. These
heuristics were either developed and transposed to other languages (99, 100, 101, 102).

Each argument identified in the previous stage serve as input to the argument
classification stage (AC). The goal is to choose, from a pre-defined set of possible se-
mantic role labels, the proper one for that argument. If an approach executes argument
identification and argument classification stages individually, then we have a Two-stage
approach (AI+AC) in argument structure. Otherwise, if one performs both stages jointly,
through a single pass on a classifier, we have a One-Stage approach (AIC). In this case,
the constituents that are not arguments in a sentence are labeled with the special class
NULL (19).

The argument classification stage is typically executed in a token by token or
constituent by constituent procedure, implying in multiple passes through a classifier for
each sentence. As classifier decisions are taken independently of one another, the same
semantic role may be attributed to multiple constituents, violating constraints according
to the adopted formalism.

In PropBank for instance, although optional, an argument must not be utilized
more than once per predicate and if this situation occurs, it invalidates the annotation of
the whole sentence. To prevent such problem, some studies adopt a global inference stage
(GLOBAL). The objective is to apply a classifier that considers the best global decision
for the whole proposition, minimizing eventual inconsistencies produced by the argument
classification stage. This procedure what may improve the overall model accuracy. There-



Chapter 2. Systematic Literature Review 30

fore, a semantic role labeler performs a local inference if the system directly returns the
argument classification results. Otherwise, if it uses a post-processing stage with these
results, then it performs a global inference stage.

Punyakanok et al.(103) showed competitive results modeling the global stage as
an Integer Linear Programming (ILP) problem. In such model, the authors translated
the sentence-level constraints to an off-the-shelf ILP solver whose goal is to maximize
an objective function considering its constraint functions. Pradhan et al.(101) relaxed
the linguistic constraints and, in an attempt to maximize the best global classification,
addressed the inference stage using a dynamic programming algorithm (Viterbi) which is
intended to find the best sequence of tags for a sentence. Another traditional approach
is to employ a re-ranker scheme where a global classifier takes the labels generated in
argument classification stage and combines them with a new set of features (104).

The SRL task is tightly related to the quality of the syntactic parser and their
respective representation. As expected, the errors on the syntactic parser are propagated
to the semantic labeler, degrading its overall accuracy. This phenomenon is known as
error propagation and motivated studies to combine the output of different parsers. The
idea is that the nature of the mistakes each parser make are different, and therefore, their
combination enables the classifier to learn the best representation for a given sentence,
reducing the overall error.

Koomen et al.(105) tested this setting, and their results point out to a significant
improvement in the SRL accuracy, confirming such hypothesis. The approach though is
computationally expensive and, consequently, impractical in real scenarios. This strategy
is named in this work as a System Combination (SYSCOMB) and was employed in several
studies (101, 76, 106, 107).

Another global strategy concerns to inferring both, syntactic and semantic labels
at the same time, in a joint learning setting. The inspiration is to take advantage of the
existing syntactic-semantic relationship, what may mutually benefit each task (108, 109).
Several experiments have been conducted based on this hypothesis, reporting a median
accuracy (110, 111). Considering the complexity of such approaches and their results, the
usage of joint parsing strategy is questionable (112).

2.2.4.3 Evaluation

The SRL task is usually treated as a supervised classification problem and uses the
following evaluation measures: Precision (𝑃 ), Recall (𝑅) and F-Score (𝐹𝛽=1). They are
respectively described in the equations 2.1, 2.2 and 2.3 where 𝑇𝑃 means the number o true
positives (correctly classified arguments), 𝐹𝑃 is the number of false positives (incorrectly
classified arguments), and 𝐹𝑁 represents the number of false negatives (arguments that
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Figure 4 – SRL processing stages

should be classified but were not).

𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2.1)

𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2.2)

𝐹𝛽=1 = (1 + 𝛽2)𝑃𝑅

𝛽2𝑃 + 𝑅
= 2𝑃𝑅

𝑃 + 𝑅
(2.3)

The precision is the proportion of correct labels predicted out of the predictions
made by the model. Recall, on the other hand, may be understood as the proportion of
correct predictions from all the available arguments in the dataset. At last, the F-measure
extracts the harmonic mean between precision and recall (113).

To evaluate the performance of a supervised SRL model one must compute these
values for each possible semantic role, yielding a local performance measure. To compute
the overall performance of the system, one must average local precision and recall. These
averaged results are then used as input to the F1-score equation that will provide the
macro-averaged score of the system.

The shared tasks CoNLL-2004 (114), CoNLL-2005 (115), CoNLL-2008 (13) and
CoNLL-2009 (116) have an important position toward the evaluation topic. They created
a fair comparison environment for SRL task. Each of these tasks offered static groups of
resources that included standardized partition sets, lexical resources, and pre-processing
tools.

CoNLL-2004 (114) and CoNLL-2005 (115) were designed to employ the PropBank
formalism on an early version. Their fundamental exception is that the first offered shallow
syntactic parsers while CoNLL-2005 focused on constituency-based parsers.

The CoNLL-2008 (13), also focused on the English language, introduced signifi-
cant differences from its previous editions. First of all, the corpus utilized a joint version
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of PropBank and NomBank what implies in the presence of nominal and verbal pred-
icates. The shared task also required results for predicate identification and predicate
disambiguation stages in its assessment. The major distinction though concerns the us-
age of dependency-based grammars as the syntactic representation offered to researchers.
Although not obligatory, the authors also encourage the joint parsing of syntactic and
semantic structures.

CoNLL-2009 (116) followed most of the settings from the previous version. This
time, however, instead of working only with the English language, the task introduces a
multilingual setting covering the following languages: Catalan, Chinese, Czech, English,
German, Japanese and Spanish. The F1-score achieved in each language is averaged,
designating the overall accuracy achieved by a participant paper. The predicate structure
investigation was also modified, and this time it only requires investigation on predicate
disambiguation stage.

2.3 Methods
This systematic literature review observes the general guidelines proposed by Levy

e Ellis; Moher et al.(117, 118) and is divided into the following steps: The definition of the
research questions, the search strategy, the paper screening procedure, and classification.

2.3.1 Research questions

The research questions are crucial elements while conducting a systematic litera-
ture review. They are responsible for the scope, guiding the research choices in multiple
levels (117). The Table 5 lists the research questions of the present study. The primary
aspiration of these questions is to provide the understanding of how scientific literature
addresses the SRL task.

Table 5 – Research questions

ID Research Question

RQ1 What aspects of SRL techniques impact its accuracy?
RQ2 What are the most accurate studies reported in literature?
RQ3 How often has each processing stage been employed in SRL?
RQ4 Which are the machine learning techniques utilized in SRL?
RQ5 Which are the dominant syntactic representations in SRL experiments?

The goal of RQ1 is to determine which factors (syntactic representation, learning
approach, syntactic views, target languages) may impact the SRL accuracy. The RQ2, on
the other hand, intends to identify the state-of-the-art accuracy of SRL studies reported
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in the literature. Thereby, in both questions, our analysis took into account the measures
and procedures described in section 2.2.4.3.

The RQ3 aims to identify how often each processing stage is utilized. In our
analysis, we considered the processing stages listed in section 2.2.4.2.

The RQ4 seeks to verify tendencies and research gaps regarding ML approaches
in SRL. This analysis considered the ML taxonomy presented in section 2.2.3.

Finally, RQ5 serves the purpose of identifying eventual trends in the adoption of
syntactic representations in SRL research. The analysis took into account the syntactic
representations presented in section 2.2.4.1.

2.3.2 Search Strategy

As a strategy in the search for papers, we first created the search strings. We later
defined the online databases to be used and their respective retrieval settings. At last,
we determined the inclusion and exclusion criteria on the search results. These steps are
detailed in the following subsections.

2.3.2.1 Search Terms

The search terms adopted in this work are presented in the Table 6. With them,
we attempted to cover the most frequent terms and its corresponding variations employed
in the literature: Semantic role labeling, Shallow semantic parsing, Semantic parser, Se-
mantic labeler (3, 119). The search terms also comprise suffix variations such as parser
and parsing, labeler and labeling, and so on.

Table 6 – Conceptual search string used in data retrieval procedure

Conceptual search string
"semantic role*" OR

"semantic pars*" OR
"semantic label*" OR

"shallow pars*"

2.3.2.2 Data retrieval

In this study we chose to work with the following digital libraries: ACM Digital
Library9, IEEEXplore10, Science Direct11 and Springer Link12.
9 <http://dl.acm.org>
10 <http://ieeexplore.ieee.org/Xplore/home.jsp>
11 <http://www.sciencedirect.com>
12 <http://link.springer.com>

http://dl.acm.org
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com
http://link.springer.com
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The data retrieval process consisted in querying each selected digital library for
the terms mentioned in the conceptual search string (Table 6). The results were then
stored in a reference management application named EndNote13.

2.3.2.3 Selection Criteria

This literature review covers experiments published in journal articles and con-
ference papers from the previously mentioned digital libraries, written in the English
language, which had reported results for the SRL task. Furthermore, we seek papers pub-
lished in the period comprised from 2002, the year of the first successful approach for
automatic SRL (3), to August 2016, when we conducted the search.

Books, thesis, dissertations, posters, letters, interviews, newspaper articles and
other publication means were not considered in this review. We also excluded duplicated
articles or those that do not mention the usage of SRL technique.

2.3.3 Screening of Papers

The Figure 5 illustrates the procedures that have been followed to determine the
articles contained in this systematic literature review. The search in online databases re-
sulted in a total of 2584 papers that ranked according to their origin as follows: ACM
Digital Library (1011 or 39.12%), SpringerLink (859 or 33.23%), IEEEXplore (584 or
22.60%) and Science Direct (130 or 5.03%). It is worth mentioning that we directly ap-
plied, in each of the target search engines, selection criteria such as the publication period
and publication mean.

With this initial set of papers, we proceeded to the removal of duplicate references
found when joining the results of the aforementioned digital libraries. To do so, we applied
the function Find Duplicates of EndNote software, accepting its suggestions on which
version of each duplicate document should be discarded. In this stage, 103 references (or
3.98% of the total) were excluded resulting in 2481 papers for the sequence.

The following stage consisted of a topic filtering procedure when we read the title
and abstract of each one of the 2481 remaining papers. The goal was to identify papers
noncompliant with the topic defined in the selection criteria. In this stage, we excluded
2157 articles (86.94%). This amount of exclusions is due to the broad coverage of the
terms that we utilized in the search string. Semantics is an important topic discussed in
a range of research fields such as linguistics, computer vision and even in neurology. For
this reason, the results contained a considerable amount of papers that did not fit the
selection criteria.
13 See <http://endnote.com>

http://endnote.com
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The 324 articles left were the subject of further analysis, through a full read of
its content. In this last stage, we seek to verify the compliance of its content with the
selection criteria. In this step, we removed another 148 articles (5.96%) resulting in a total
of 176 papers included in this review (7.09%). The amount of excluded papers in this last
stage is due to the selection criteria that requires that the experiment report results for
the SRL task.

Figure 5 – The procedures followed in the screening of papers

2.3.4 Data Extraction

The data extraction procedures adopted in this study were based in (120) and
have been adjusted to our research questions and methods. The 176 articles included in
the review were read in full twice, and both text and meta-data used to classify the papers
in line with the defined classification.

2.3.5 Classification

The categories analyzed in this study were: Experiment accuracy, evaluation set,
processing stages, machine learning approach, machine learning algorithms, syntactic struc-
ture, formalism, and target languages. During the data extraction, papers assumed a single
value in the following categories: evaluation set, machine learning approach and syntactic
structures. The remaining categories allowed the assignment of multiple values for the
same paper.

The categories experiment accuracy and evaluation set were collected from a sub-
set of selected papers considered comparable. By comparable, we admit the papers that
participated or adhered to a test set proposed by shared tasks such as CoNLL or Se-
mEval. This choice is due to the static nature of the lexical resources offered by these
events, which facilitates the comparison process (as explained in section 2.2.4.3). Lex-
icons such as PropBank and FrameNet are dynamic and have been augmented in time
with new releases and versions that updated its coverage and corrected eventual mistakes.
Dynamic evaluation sets hamper the comparison since they may create an unfair ground
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among experiments carried in different epochs. We also considered as comparable only the
experiments that utilized evaluation sets from shared tasks that were used by more than
one participant. For this reason, the four SemEval shared tasks identified in our study
were excluded from this subset since each of them accounted to one experiment.

The experiment accuracy is pointed by its F1-score (more detail in section 2.2.4.3).
As we are concerned with automatic SRL, results derived from approaches based on gold-
standard syntactic resources were discarded. The argument is that this is an inexistent
condition in real-world usage. If an article reported accuracy to multiple comparable
evaluation sets, the one with the highest F1-score was collected. If the study presented
results for various languages, the average value was taken as the overall accuracy of the
study (following the procedures adopted by (116) in CoNLL-2009). We also registered the
score reached for each language, individually. If an experiment presented corrected results
after the submission to a shared task, we considered the corrected ones. The evaluation set
category indicates the shared task utilized by the experiment. For the remaining categories
in this classification, the comparable constraint is not applicable.

The processing stages category is comprised of the stages presented in the section
2.2.4.2. We collected this information in all the experiments that have reported its usage.
If an article reported results for multiple framework configurations, we collected those
employed in the most accurate one.

The machine learning approach category concerns to the learning type described
by each paper (supervised, unsupervised, and so forth). The machine learning algorithms
category was collected whenever the article mentioned its usage in one of the processing
stages. If a given article tests different ML algorithms in a processing stage, the algorithms
that participated in the most accurate approach are collected. The taxonomy applied in
such categories was exhibited in section 2.2.3.

The syntactic structure category encompass the syntactic representations intro-
duced in section 2.2.4.1. We classified papers in this category whenever a paper explicitly
reports the usage of a syntactic view. If a paper reported results to multiple syntactic
views, we collected the ones utilized by the most accurate approach.

The employed formalism and the target languages were collected for all papers
that have reported its usage.

2.4 Results
This section summarizes the descriptive results of this study.

The Table 18 (in Appendix A) lists the 176 papers included in this systematic
literature review. Conference papers responded for a share of 85.22% (150) while journal
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articles kept the remaining 14.78% (26) from the selected studies.

During the data extraction procedure, the publication year was considered useful
to understand how active is the research on SRL task. Figure 6 shows the number of
collected experiments per year. One may observe that the period comprised between the
years 2005 and 2012 exhibited a higher research activity. This fact may relate to the
occurrence of shared tasks such as CoNLL and SemEval, dedicated to SRL. Considering
the whole period, the average number of experiments per year is 11.73 while its median
amounts to 6. Notice that we collected data on August-2016 so, the last year is likely to
be incomplete.

In regards to the comparable subset of papers, following our method, this study
identified 74 experiments (or 42.04% from the total), distributed according to the test set
as follows: CoNLL 2004 (2), CoNLL 2005 (37), CoNLL 2008 (20) and CoNLL 2009 (15).

Figure 6 – Number of collected experiments per year

2.5 Discussion
This section describes and discusses our findings from the data extraction and

classification procedures in the context of the research questions.

2.5.1 RQ1 - What aspects of SRL techniques impact its accuracy?

As the question is concerned with the factors of accuracy, in this section we exclu-
sively utilized the comparable subset of the selected papers (74 papers).

Figure 7 aims at examining the impact of the existing differences among the eval-
uation sets on the overall accuracy of SRL experiments (CoNLL shared tasks described
in section 2.2.4.3). The visual analysis suggests that the test set choice does not cause a
significant impact on F1-score. To test such hypothesis, without assuming that our sam-
ple is derived from a normally distributed population14, we conducted a Kruskal-Wallis
H test15 which failed to reject the null hypothesis (chi-squared = 2.3697, 𝑑.𝑓. = 3, p-value
= 0.4993) which states that the samples came from populations with identical locations.
In other words, one may say that, considering our sample, the test set choice does not
affect the SRL accuracy what is contrary to common sense. The differences among the
settings of each shared task (section 2.2.4.3) led us to believe that they would produce
different results. For this reason, from now on, we analyze the comparable experiments
14 See the F1-score Q-Q plot in Appendix A
15 A nonparametric test also known as One-way ANOVA on ranks
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disregarding the evaluation set utilized. When analyzing the general F1-score distribution
on SRL we found that the median is ≈ 76, while the standard deviance is ≈ 6.8 and the
mean is ≈ 75.71.

Figure 7 – The F1-score collected in comparable experiments grouped by test set

Regarding learning type category, all comparable studies were based on super-
vised approaches with the exception of Deschacht e Moens(121) that employed a semi-
supervised approach based on a distributional semantic model. A comprehensible result
particularly considering the nature of the shared tasks. Another point of view is explored
in Figure 8 which analyzes the F1-score distribution regarding the syntactic representa-
tions adopted by each comparable experiment. One may observe that dependency trees
were the most popular choice among the comparable experiments with 34 occurrences,
while 26 adopted the constituency-based representation. The syntactic combination strat-
egy16 was utilized on nine occasions while word embedding models accounted for three
experiments. Finally, two studies chose shallow syntactic parsers. We verified the impact
on accuracy caused by the adoption of different syntactic representations. In this sense, we
performed a Kruskall-Wallis H test, which failed to reject the null hypothesis (chi-squared
= 5.8655, df = 4, p-value= 0.2094), and therefore, regarding our sample, no syntactic
representation causes a statistically significant difference on location shifts. The result
indicates that the simple choice of a syntactic representation is not enough to produce
a significant accuracy gain in an SRL model. This finding, however, contrasts with the
16 See Table 18 in Appendix A for the stratified view on syntactic combinations
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findings of (19, 122, 11, 101) that achieved an improved accuracy by combining multi-
ple syntactic representations. The main reason, for this divergence, may be related to the
fact that these studies relied only on their local models while our method analyzed several
studies at once.

Figure 8 – Syntactic View

The target language of each experiment is another point addressed in our work (see
Figure 9). All the 74 comparable experiments reported results to the English language.
From this number, we identified 15 multilingual studies, which reported results for Cata-
lan, Chinese, Czech, English, Spanish, German and Japanese following the CoNLL-2009
shared task settings. We also notice that all multilingual studies were based on purely
supervised approaches. The Kruskall-Wallis H test (chi-squared = 21.874, d.f. = 6, p-
value= 0.001276) followed by a multiple comparison post-hoc test 17 revealed that the
difference in location shifts are statistically significant when comparing the German ex-
periments with English or Czech based studies. As expected, our results corroborate the
notion that the accuracy in SRL, particularly for the techniques based on supervised
learning, is dependent on the researcher ability to capture features that translate linguis-
tic aspects into features for the model (78). Given its characteristics, some languages are
harder to parse than others. Previous studies targeted at the Chinese language, for in-
stance, attempted to employ the same feature templates utilized for the English language
and obtained a degraded performance (124, 125, 102).

2.5.2 RQ2 - What are the most accurate studies reported in literature?

As this question concerns the accuracy in SRL task, we exclusively analyzed the
comparable subset of the selected papers (74 papers).
17 Non parametric test described by (123) and implemented in the pgirmess package for R language
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Figure 9 – The F1-Score distribution grouped by target language

The Table 7 ranked the ten most accurate experiments, elucidating some of its
fundamental characteristics. The most accurate approach achieved an F1-score of 83.75%,
allowing a good margin for improvements in future studies. We highlight two main points
on the rank: First, dependency-based experiments dominates the rank with eight occur-
rences, followed by word embeddings with three appearances. Constituency-based studies,
on the other hand, exhibits only one entry in the rank. Second, seven out of ten studies in
the rank utilized a global inference stage what may indicate that its presence is essential
for a state-of-the-art accuracy.

Table 7 – The 10 most accurate experiments reported in literature

Experiment F1-Score Learning strategy Target language Syntactic view Framework
Johansson e Nugues(94) 83.75 Supervised English Dep. PI+PD+AI+AC+GLOBAL
Zhou e Xu(84) 82.84 Supervised English No Synt.(WE) AIC+GLOBAL
Lim, Lee e Ra(126) 81.87 Supervised English Dep. PI+PD+AIC+GLOBAL
Deschacht e Moens(121) 80.98 Semi-supervised English WE+Dep. AIC
Björkelund, Hafdell e Nugues(127) 80.80 Supervised Multilingual Dep. PD+AI+AC+GLOBAL
Johansson e Nugues(94) 80.61 Supervised English Dep. JP(PD+PRU+AI+AC+GLOBAL)
Zhao, Chen e Kit(128) 80.53 Supervised English Dep. PD+PRU+AIC
Zhao et al.(129) 80.47 Supervised Multilingual Dep. PD+PRU+AIC
Toutanova, Haghighi e Manning(130) 80.32 Supervised English Cons. AI+AC+GLOBAL
FitzGerald et al.(92) 80.30 Supervised English No Synt.(WE) PI+AIC+GLOBAL

Syntactic View - Dep.:Dependency trees. Cons.: Constituency Trees. WE : Word Embeddings. No Synt.: No Syntactic View.
Framework - PI : Predicate Identification. PD:Predicate Disambiguation. AIC : Joint argument identification and classification.

PRU : Pruning. AI : Argument Identification. AC : Argument Classification. GLOBAL: Global Inference JP: Joint Parsing

2.5.3 RQ3 - How often has each processing stage been employed in SRL?

We identified the processing stages in 159 out of the 176 selected experiments.
Concerning the predicate structure (see Table 8), we observe that while only 36.4% of the
experiments performed at least one of its stages, the disambiguation stage is the most
frequently used. The argument structure (presented in Table 9) on the other hand, was
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explored in 94.5% of the experiments. In this sense, we highlight the low representativeness
of the pruning stage when compared to the other stages (which are mutually exclusive).
Concerning the inference optimization strategies (see Table 10), we observe that the Global
inference stage championed the rank, while almost a half of the experiments attempted
to improve their results by employing at least one of such strategies (46.5%).

Table 8 – Predicate Strcture

Stage # Experiments (%)
PI 33 (20.7%)
PD 40 (25.1%)
PID 2 (1.2%)
Total 58 (36.4%)

Table 9 – Argument Structure

Stage # Experiments(%)
AI+AC 89 (55.9%)
AIC 63 (40.6%)
PRU 45 (28.3%)
Total 151 (94.9%)

Table 10 – Inference Optimization

Stage # Experiments(%)
Global inference 52 (32.7%)
Joint Parsing 15 (9.6%)
System Combination 13 (8.1%)
Total 74 (46.5%)

With the intention of elucidating how the processing stages are arranged together,
our study also collected the configuration presented in each of the experiments (identi-
fied in 155 out of the 159 studies in this section). Table 11 ranks the ten most popular
pipelines configurations. When combined, the rank responds to more than 60% of the
total number of pipeline configurations reported in the literature. One may notice that
simple frameworks, which investigated only the argument structure, are the most popular
choice in literature. The global inference stage is also widespread.

2.5.4 RQ4 - Which are the machine learning techniques utilized in SRL?

Our study identified the learning strategy for the 176 selected papers. The machine
learning algorithms have been identified in 162 occasions.
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Table 11 – The ten most frequently addressed frameworks in literature

Framework # Exp.(%)
AIC 17
AI+AC 16
AI+AC+GLOBAL 14
AIC+GLOBAL 10
PRU+AI+AC 8
PRU+AI+AC+GLOBAL 8
PD+AI+AC 5
PD+AIC 5
PI+AI+AC 5
PRU+AIC 4
Total 94 (60.6%)

Regarding the learning method, the selected papers were classified as follows: Su-
pervised (147), semi-supervised (17) and unsupervised (12). One may observe that, while
there is an expressive preference for purely supervised approaches (83% of the studies),
no studies utilizing reinforcement learning have been identified what may represent a re-
search gap. Maximum Entropy (55), Support Vector Machines (46), Conditional Random
Fields (8) and Neural Networks (8) are the most popular machine learning algorithms
employed in the SRL task, being utilized in 72.22% of the approaches. All these algo-
rithms are considered discriminative classifiers. Table 12 stratifies the machine learning
algorithms when applied on the argument structure, demonstrating that this pattern is
also repeated.

Table 12 – The frequently utilized algorithms in argument structure

AIC AI AC
Maximum Entropy (20) SVM (38) SVM (36)
SVM (12) Maximum Entropy (24) Maximum Entropy (25)
Neural Networks (6) Logistic Regression (5) Logistic Regression (5)
ADABOOST (3) CRF (3) CRF (3)
IB1 (3) Snow Learning (3) Snow Learning (3)

2.5.5 RQ5 - Which are the dominant syntactic representations in SRL exper-
iments?

In this study, we were able to identify the syntactic representation employed in all
176 selected experiments. Figure 10 presents the adoption of each syntactic view grouped
by year. One may observe that constituency-based representation was slightly more fre-
quent than the dependency-based representation. We also notice that when combined,
constituency and dependency representations responds for 70.45% of the total. We also
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observe that constituency-based views were most common in the first years, reaching its
peak in 2005 and gradually losing relevance. Dependency-based representations, in turn,
reached its peak in 2008 and 2009. In recent years, though, distributional word models and
the combination of multiple syntactic views have become the dominant representations.

Figure 10 – The adoption of each syntactic representation per year

2.6 Limitations and Threats to Validity
We focused our automated search on four digital libraries in the computer science

domain. However, it is possible that such databases do not cover all the relevant papers in
this field of study. Besides that, our research only covers material written in the English
language published before August-2016, when we performed the search on databases. It
is probable that there are relevant studies published in other languages or even new ones,
published after our search for papers.

2.7 Conclusions and Future Work
This article summarized the state-of-the-art of SRL task through a systematic

review process. We selected 176 experiments from an initial set of 2584 articles. Our
method revealed that the best overall accuracy reported for SRL is around 83%. The
following possible factors have been analyzed regarding the accuracy:

∙ The adoption of different evaluation sets do not cause a significant impact on SRL
accuracy.

∙ The choice of syntactic representations does not produce relevant impact on SRL
accuracy.

∙ SRL performance is language-dependent and some languages are significantly harder
for SRL systems.

Our study was not able to identify papers reporting the use of reinforcement learn-
ing algorithms, what constitutes a research gap to be addressed in future investigations.
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Concerning the adoption of syntactic representations, we found that constituency
based views have lost its significance with time. In this sense, distributional semantic mod-
els and the combination of multiple syntactic representations are the dominant syntactic
choice in recent years.
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3 Results

3.1 Introduction
Semantic role labeling (SRL) is a natural language processing task (NLP) whose

goal is to capture and represent the core structures - participants and circumstances - of
events or situations typically expressed in human languages. These event structures are
revealed by providing answers to a question such as who did what to whom, where, when
and how. Formally, the task is to determine the semantic role played by each argument
of the predicates in a sentence. Sentence 8 illustrates the concept:

(8) [Throughout his life𝑊 ℎ𝑒𝑛], [Einstein𝑊 ℎ𝑜] [published𝑑𝑖𝑑] hundreds of [articles𝑊 ℎ𝑎𝑡]

SRL is usually employed as an intermediary technique and is considered a signif-
icant step towards the natural language understanding (11). Many previous studies had
proven its utility in a wide range of NLP tasks such as question and answering systems
(21, 9), text summarization (5), open information extraction (6), machine translation (7),
and co-reference resolution (8), to cite a few.

However, this is a challenging task. The model’s performance depends on its ability
to deal with language aspects such as syntactic alternations, selectional restrictions, and
ambiguity. Even when considering the English language - the most addressed language in
the literature - the performance is still around 83 points (94, 131). This fact illustrates
how hard is the task and how much room for improvement there is in this field. Regarding
the Portuguese language, the research is still incipient. There is a scarcity of resources and
publicly available tools what hampers research and, consecutively, detain the innovative
process for the language.

Earlier approaches employed statistical machine learning methods that relied on
the extraction of complex morphosyntactic features and a series of declarative constraints
(11, 132, 133). In contrast, for the past five years, there has been a rapid rise in the usage
of neural networks, exploring its feature induction capabilities. It reduces the overall
complexity while achieving competitive results(19, 84, 131). In this context, Recurrent
Neural Networks have been receiving much attention, and recent inquiry demonstrated
that its natural ability to articulate long-range dependencies is particularly beneficial for
several NLP tasks (134, 135, 136). This network architecture though has not yet been
tested in the SRL task for the Portuguese language.

In this paper, we present an end-to-end semantic role labeler for the Portuguese
language that outlines the problem as a supervised sequence labeling task. The one-step
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system uses the IOB tagging schema and applies a word embedding model in a deep
bidirectional long short-term memory neural network (deep BiLSTM). The network pre-
dictions serve as input to an inference mechanism that uses a global recursive neural
parsing algorithm, specifically tailored for the task. We also provide a detailed investiga-
tion of the effects of word embedding dimensionality and network depth on the overall
performance of the system. Our method requires a minimal feature engineering process
and does not depend on syntactic parsing. The resulting system improved the previous
state-of-the-art for the Portuguese language in around 3 points using the PropBank-Br
corpus (15), reducing the relative error in 8.74%. Moreover, our investigation revealed that
choosing proper word embedding dimensionality and network depth are critical aspects
for optimizing the system’s performance.

∙ Our system pushes the previous state-of-the-art for the Portuguese language in
around 3 F1-score points, reducing the relative error in 8.74%.

∙ To the best of our knowledge this is the first study to apply a recurrent neural
network architecture on the SRL task for the Portuguese language.

∙ We provide the tool support for the SRL task in the Portuguese language. The
system was released under BSD license and its source code is available at <https:
//github.com/dfalci/deep_pt_srl>.

This paper is organized as follows: section 3.2 provides the background for the task,
exposing some fundamentals and the relevant prior work in this field. Section 3.3 presents
the PropBank-Br corpus, used in our experiment. Section 3.4 depicts our approach, de-
tailing the relevant parts of our system. Section 3.5 shows the experimental setup while
section 3.6 reports our results, followed by discussion. At last, section 3.7 concludes our
work.

3.2 Background
In this section, we briefly describe some fundamentals of the semantic role labeling

task and discuss the relevant prior work.

3.2.1 Semantic Role Labeling

From a linguistic perspective, the goal of the task is to discover the existing
predicate-argument structures in a sentence that, in this work, are referred to as propo-
sitions. A predicate, in this case, is represented by the words, usually verbs, responsible
for evoking semantic frames that in turn, triggers the description of an event or situation.
The verbal predicate bought in the sentence John bought a new house evokes the purchase

https://github.com/dfalci/deep_pt_srl
https://github.com/dfalci/deep_pt_srl
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frame that requires a particular set of optional semantic arguments such as the buyer,
the seller, the goods, and the price paid. In humans, these relationships are implicitly
inferred considering the individual characteristics such as linguistic knowledge and past
experiences. Only in the presence of these semantic arguments, an event may produce a
minimal unit of meaning in the interlocutor.

From a machine learning point of view, SRL task is usually treated as a supervised
classification problem. The task is to choose, from a pre-defined set of possible semantic
role labels, the proper ones for each token or constituent with respect to a given predicate.

Models may be classified according to its approach to the problem. Some authors
treat the task as an atomic unit, where final predictions are obtained after a single pass of
each token or sentence segment into a classifier. In this one-step framework, an exceptional
null semantic role indicates the absence of semantic attachment of a candidate argument
with the predicate. On the other hand, there are authors who argue that considering its
high complexity, the task must be decomposed into a sequence of smaller and specialized
steps arranged in a pipeline where the output of the previous step is an input component
of the following one. Two of the most frequent steps used in these pipelines are the
argument identification and classification. The former performs a binary classification
that indicates whether a sentence segment act as an argument or not. Then, the latter
predicts the semantic role for each item positively labeled by the identification step. This
pipelined approach is known as a two-step framework and which approach is better is still
a matter of debate in scientific inquiry.

As usual in any supervised problem, the task requires a representative annotated
lexical resource, built considering a specific formalism. For the English language, Prop-
Bank (14) is the most used corpus and, it adds a semantic layer on top of syntactic trees
annotated by Penn TreeBank, following the theory presented by Levin(10) and Dang et
al.(37). Sentences 9 and 10 illustrates its annotation formalism.

(9) [The stock’s 𝐴1] [accelerated 𝑉 ] [from a price of $8 a share 𝐴3], reaching [its peak at
$10 𝐴4].

(10) [Jobs 𝐴0] [built 𝑉 ] [the Apple I 𝐴1] [in a garage 𝐴𝑀−𝐿𝑂𝐶 ].

In sentence 9, the predicate accelerated evokes the accelerate frame, with the ac-
celeration sense (mapped in PropBank frame files1), that in spite of its many syntactic
configurations, expects the following set of core semantic arguments: the agent (A0 ), the
thing accelerating (A1 ), the extension (A2 ), the start point (A3 ), and the end point
(A4 ). At the same time, the predicate built at sentence 10 expects arguments such as the
1 PropBank frame files are described in <https://github.com/propbank/propbank-frames/tree/

master/frames>

https://github.com/propbank/propbank-frames/tree/master/frames
https://github.com/propbank/propbank-frames/tree/master/frames
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builder (A0 ), the construction (A1 ), the materials (A2 ), and the end state (A3 ). Note
that each predicate assigns a different meaning to the core labels (A0-A5 ), and, with the
exception of the arguments A0 and A1 that usually designate the agent and the patient
of an action, no inferences can be made about the meaning of the other roles. There is
also a set of optional adjunct arguments (AM-X) that are shared by all predicates. They
modify the proposition adding information such as location, time, and manner2.

To evaluate the performance of a supervised SRL model one may apply standard
measures such as precision, recall, and f-measure, described in equations 3.1, 3.2, and 3.3,
respectively. The measurement is made for each semantic role, yielding a local precision
and recall. To compute the overall performance of the system, one must average local
precision and recall. These averaged results serve as input to compute the F1-score of
the system (macro-averaged F-score), which indicates the harmonic mean between the
averaged precision and recall.

𝑃 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑎𝑔𝑔𝑒𝑑
(3.1)

𝑅 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑎𝑙𝑙 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(3.2)

𝐹𝛽=1 = (1 + 𝛽2)𝑃𝑅

𝛽2𝑃 + 𝑅
= 2𝑃𝑅

𝑃 + 𝑅
(3.3)

3.2.2 Related work

Collobert et al.(19), pioneered the usage of neural networks for the SRL task. Their
one-step system (SENNA) uses a convolutional neural network over windows of words in a
proposition to infer its semantic labels. An inference stage based on a Viterbi decoder de-
termines the final tags from the network output. Differing from the previous approaches,
this system uses a word embedding model in replacement of traditional syntactic features,
hitherto widely employed. Their results point to a reasonable performance while dramati-
cally reducing the processing time. The SENNA approach also inspired subsequent studies
that expanded the investigation by adding syntactic features based on dependency trees
and morphological information what significantly boost the model’s accuracy (91). While
convolutional layers allow one to work with arbitrary large vectors capturing their most
relevant features, it sacrifices most of the structural information on an input sequence and
therefore, are not the best way to capture long-term relationships. In other words, this
architecture does not preserve the input order in sequential data such as text and only
encompasses words inside of its sliding window context (138).
2 The full list of semantic arguments in PropBank is defined in (137)
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Considering these aspects, Zhou e Xu(84) proposed a deep BiLSTM model that
does not resort to syntactic features. Their approach, also based on word embeddings,
outperformed previous studies based on syntactic features in the English language us-
ing CoNLL-2005 and CoNLL-2012 data sets. Unlike this work though, they employed a
Conditional Random Field (CRF) layer at the inference stage and did not investigate
the effects of word embedding dimensionality on the model’s performance. In a similar
architecture, Wang et al.(139) added feature templates based on part-of-speech informa-
tion and produced a state-of-the-art labeler for the Chinese language. He et al.(131) also
proposed a BiLSTM architecture for the SRL task on the English language. This time
though, the focus was at network initialization, hyper-parameter optimization, and in
the incorporation of recent training techniques such as highway connections and recur-
rent dropout. Our system may be seen as a hybrid of these approaches, considering their
useful observations and experiences.

Regarding the Portuguese language, Alva-Manchego e Rosa(17) proposed a pre-
liminary architecture for the SRL task. Their supervised approach, dependent on mor-
phosyntactic features, consists of a pipeline that uses Naive Bayes and Decision Trees
as classifiers. The system though uses an early version of PropBank-Br (v1.0) and, most
importantly, relies on golden syntactic trees provided by the corpus, an inexistent condi-
tion under real-world circumstances. These factors prevent a direct comparison with our
results.

Fonseca e Rosa(18) were the first to provide a fully automated semantic role labeler
for the Portuguese language. The system (NLPNET3) was trained on PropBank-Br v.1.1
and is heavily based on SENNA’s approach. The most fundamental difference between
these systems regards the number of stages they employed: As mentioned before, SENNA
utilizes a one-step approach while NLPNET, after evaluating the on-step strategy, adapted
its architecture transforming it into a two-step pipeline. Experiments were also conducted
to verify the impact of the addition of syntactic chunks to the feature templates used
in the original system. Their best single training session, due to data scarcity, yielded
65.13 F1-score points, an overall performance far inferior compared to that of SENNA (a
margin of 10 F1-score points). To the best of our knowledge, this is the only functional
SRL system for the Portuguese language whose source code is publicly available and,
therefore, is referred throughout this work as our baseline system.

Hartmann, Duran e Aluísio(140) compared both approaches (the preliminary ap-
proach of Alva-Manchego e Rosa(17) and Fonseca e Rosa(18)) in a hybrid lexicon, specif-
ically created for this task. This new corpus incorporated two subsequent versions of
PropBank-Br. Their main goal was to evaluate the accuracy of these systems under re-
vised and non-revised syntactic trees using a larger and balanced corpus for the Brazilian
3 Available at <http://nilc.icmc.usp.br/nlpnet/>

http://nilc.icmc.usp.br/nlpnet/
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Portuguese. Their results indicate that NLPNET systematically yielded an inferior per-
formance when compared to the system of Alva-Manchego e Rosa(17). Our results cannot
be compared to this system since the new corpus is not publicly available.

Semi-supervised learning has also been investigated in the Portuguese language.
Alva-Manchego e Rosa(141) proposed an architecture based on a self-training strategy in
a three-stage pipeline which uses maximum entropy classifiers. In this paper, however, the
authors focused on the discussion of topics such as data preparation, feature extraction,
and methodology, without providing practical results. Carneiro et al.(142) materialized
the self-training strategy. This article though, considered just three commonly used verbs
in Portuguese language (give, say, and do). Their results point that a supervised method
must be exposed to over at least 40% more labeled arguments to achieve a comparable
performance level, a promising observation considering the limited size of the PropBank-
Br corpus.

3.3 The PropBank-Br Corpus
In this section, we present the corpus used in our experiment and describe the

procedures that have been executed on it.

Inspired by its English counterpart (14), PropBank-Br (15) is a Brazilian Por-
tuguese training corpus specifically designed for the SRL task. It was built on top of
the Brazilian portion of Bosque, a section of Floresta Sintá(c)tica treebank. The corpus,
in its version 1.14, contains 6,142 propositions distributed in 4,213 sentences extracted
from Brazilian newspapers. The corpus follows in large part, the annotation guidelines
employed by its original version.

When compared to other languages though, PropBank-Br may be considered a
small-sized corpus, providing 13,138 annotated roles against the 95,438 registered by the
English version - a number 7.2 times smaller. Table 13 lists the semantic roles mapped
by the Portuguese version sorted by the number of occurrences in the corpus. Note the
bias in favor of the core arguments (A0, A1, and A2 ) that, when combined, cover more
than 70% of the total number of labels. On the other hand, the last three labels are
practically insignificant, appearing less than ten times. Such bias is undesired and hurts
generalization capacity of models based on machine learning.

The following pre-processing operations where performed on the corpus:

∙ The original corpus unpacked all words formed by prepositional contraction (i.e.:
dele = de + ele), as opposed to what is routinely practiced in the Portuguese

4 Downloadable in the CONLL format at <http://www.nilc.icmc.usp.br/portlex/index.php/en/
projects/propbankbringl>

http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl
http://www.nilc.icmc.usp.br/portlex/index.php/en/projects/propbankbringl
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Table 13 – Semantic role distribution in PropBank-Br

Label # of roles % of total
A1 5061 38.52%
A0 2891 22.00%
A2 1290 9.82%
AM-TMP 1082 8.24%
AM-LOC 672 5.11%
AM-MNR 384 2.92%
AM-ADV 346 2.63%
AM-NEG 322 2.45%
AM-DIS 288 2.19%
AM-PRD 169 1.29%
AM-PNC 143 1.09%
AM-CAU 141 1.07%
A3 139 1.06%
A4 111 0.84%
AM-EXT 74 0.56%
AM-DIR 13 0.10%
AM-REC 8 0.06%
AM-MED 3 0.02%
A5 1 0.01%

language, even in formal writing. For this reason, we have re-constructed these
connections.

∙ Using character ’_’, PropBank-Br artificially concatenates tokens used in multi-
word nouns such as organization names (i.e.: Secretaria Municipal = Secretaria_Municipal).
We have identified and broke these nouns.

∙ To preserve argument contiguity, we excluded all the sentences that contained at
least one predicate whose arguments were mapped as continuation roles (C-ARG
roles)5. Thus, 536 propositions were removed from the training corpus.

∙ Six propositions presented overlapping labels what contradicts the constraints im-
posed by the PropBank formalism. These propositions were considered labeling
mistakes and were also removed from the training corpus.

In order to produce a fair comparison ground, we divided the corpus using the same
proportion pointed out by baseline Fonseca e Rosa(18). Thus, after shuffling propositions,
95% of them (5320) were used for training our model while the remaining 5% (280) were
used for evaluation purposes.
5 Continuation arguments indicate that a given sentence chunk acts as a continuation element of the

sense of another, as long as both of them are separated by other arguments
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3.3.1 IOB Conversion

As mentioned earlier, our approach uses the IOB format to express semantic roles.
Formally, this schema represents non-overlapping sentence chunks where each of them
delimits an argument boundary for a given predicate. Practically, the tokens that are
not part of an argument are tagged with the outside label (O). Otherwise, words within
the boundaries of an argument of type X are mapped as follows: The first word receives
the begin-of-X tag (B-X), and the remaining words inside the same argument structure
are labeled with inside-of-X tag (I-X). Figure 11 illustrates the differences between IOB
annotation schema and the constituent based annotation for SRL task.

Figure 11 – Differences between annotation produced using IOB schema and constituent
trees

The IOB schema is particularly useful when token-by-token processing is desired
instead of the traditional constituent-by-constituent. Notice that this transformation
maintains an interchangeable label alignment structure between these formats. In our
case, the most significant motivation for its usage is that this format allows us to elimi-
nate dependencies on an eventual syntactic parser that, if used, would be responsible for
extracting constituency trees from propositions.

Applied to PropBank-Br, the IOB schema produced 39 different roles (B and I
tags for the items in the previous table, which accounts for 37 items, plus the outside
label O and the verb V )

3.4 Our Model
This section outlines our approach, providing details about the relevant parts of

our semantic role labeler.

3.4.1 Word Representations

Distributional semantics is based on the hypothesis that the words that co-occur
in the same context tend to exhibit a similar meaning. Therefore, the meaning of a word is
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dependent on its usage context (143). Computationally, this theory provides the founda-
tion for the unsupervised creation of word representations from the co-occurrence analysis
in vast amounts of raw text. In this case, words are represented as low dimensional real-
valued vectors (word embeddings), so that the similarity of vectors indicate the semantic
similarity of the terms. Thus, vector operations in Euclidean space (typically the cosine)
may be used to compute the relatedness between word pairs.

There are several models to learn word representations from large-scale unlabeled
corpora. These methods usually belong to two categories: The ones based on the decom-
position of co-occurrence matrices (as in latent semantic analysis (144)) and the ones that
explore neural networks (87, 86, 145, 89), a method pioneered by Bengio et al.(146). Previ-
ous research though has demonstrated that these methods, although very different, tend
to produce equivalent word representations (88). A systematic comparison of different
word embedding methods is beyond the scope of this study.

The word representations utilized in this paper6 were obtained by the application
of the skip-gram model (86) on the full dump of the Brazilian Portuguese version of
Wikipedia corpus7. In this model, given a sliding window of words, one attempts to predict
the adjacent words (the context) based on the central word (the target token). It offers
good representation for rarely seen tokens and outperformed other models in NLP tasks
such as sentiment analysis and syntactic parsing (88). We relied on the implementation
provided by the Gensim library (147) for the Python language.

Text preparation for training took place as follows: After extracting the raw text
from the Wikipedia corpus8, we used the NLTK Punkt tokenizer (148) for sentence split-
ting on each of its articles. Sentences obtained were then lowercased, followed by a series
of transformations that included accents removal, punctuation separation, and substi-
tutions9. At last, each resulting sentence was tokenized, feeding the skip-gram training
algorithm.

Recent research points that the dimensionality of word embeddings is a determi-
nant factor for the overall performance on NLP tasks such as named entity recognition,
dependency parsing, sentiment analysis and co-reference resolution (149). Larger vector
dimensionalities, while beneficial in semantic relation tasks (intrinsic tasks), ended up
hurting the performance on NLP tasks (extrinsic). The results suggest that a dimension-
ality between 50 and 150 yields the best accuracy values for extrinsic tasks and it is
worthwhile to carefully choose word embedding dimensionality for extrinsic tasks.
6 The source code is available at <https://github.com/dfalci/pt_embeddings>
7 Freely available at <https://dumps.wikimedia.org/>
8 We used wikiextractor, a tool for extracting plain text from Wikipedia dumps: available at <https:

//github.com/attardi/wikiextractor>
9 Sequences of numbers were transformed into the ’#’ token while email addresses and URLs were

shortened to ’𝑒𝑚𝑎𝑖𝑙’ and ’𝑢𝑟𝑙’ tokens, respectively

https://github.com/dfalci/pt_embeddings
https://dumps.wikimedia.org/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
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Following these observations, we trained three distinct word representations with
50, 100 and 150 dimensions, respectively. In all three models, we employed a context-
window of size 5, discarding the tokens with a total frequency lower than 5. Models were
trained for ten iterations with an initial learning rate of 0.025 that linearly decays un-
til it reaches the minimum learning rate of 0.0001. After traversing 10,690,000 sentences
distributed in 957,206 Wikipedia articles for approximately 2 hours of training per itera-
tion10, we obtained a vocabulary containing 436,190 unique tokens. This number covers
more than 99% of the tokens used in PropBank-Br (we missed 138 tokens). Further anal-
ysis on these missing tokens revealed that they are primarily composed of rarely seen
nouns and first-person verbs - an infrequent narrative style in Wikipedia, but common in
journalistic and opinion texts such as those in PropBank-Br. We chose to represent these
words by randomly generated vectors.

Table 14 provides a sample of the word similarities achieved following our method.

Table 14 – Word similarities of our word representations

comprar
(buy)

paris
(paris)

característica
(characteristic) python mestrado

(master’s)
vender
(sell)

bruxelas
(brussels)

peculiaridade
(peculiarity) c++ doutorado

(doctorate)
adquirir
(purchase)

grenoble
(grenoble)

distintiva
(distinctive) javascript bacharelado

(baccalaureate)
alugar
(rent)

marselha
(marseille)

particularidade
(particularity) smalltalk pos-graduacao

(post-graduation)
gastar
(spend)

lyon
(lyon)

diferenciado
(differentiating) lisp licenciatura

(graduation)

3.4.2 Deep BiLSTM Model

A recurrent neural network (RNN) is a neural network architecture designed to
learn tasks whose output is not only dependent on the current input, but also from
previous input events. These networks usually have a form of a chain of cell instances (also
known as memory blocks) where feedback connections are responsible for transmitting
the weight of previous events throughout its structure. Standard RNN implementation
though suffers from exploding and vanishing gradient problems that, during the training
stage, prevents the network from learning long-term dependencies (150). To overcome
the vanishing gradient problem (151) proposed a kind of RNN architecture based on
long short-term memory (LSTM) cells in its hidden units. Each LSTM cell has a gating
mechanism responsible for controlling the portion of information that will be propagated
to its internal structures and the rest of the chain. One of its most distinctive abilities
concerns preserving sequential information over very long time periods.
10 The training time varies according to dimensionality
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The following equations explain the internal mechanism of each LSTM cell:

𝑖𝑡 = 𝜎(𝑥𝑡𝑈
𝑖 + ℎ𝑡−1𝑊

𝑖)

𝑓𝑡 = 𝜎(𝑥𝑡𝑈
𝑓 + ℎ𝑡−1𝑊

𝑓 )

𝑜𝑡 = 𝜎(𝑥𝑡𝑈
𝑜 + ℎ𝑡−1𝑊

𝑜)

𝑔𝑡 = tanh(𝑥𝑡𝑈
𝑔 + ℎ𝑡−1𝑊

𝑔)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

Formally, let S represent a sequence of input vectors x with an arbitrary length
n, such that 𝑆 = {𝑥1, 𝑥2, ..., 𝑥𝑛}. In this case, 𝑡 designates a given time step in S. Weight
matrices 𝑈 and 𝑊 are adjusted during the training phase. The 𝜎 symbol indicates a
logistic sigmoid function and ⊙ represents an element-wise multiplication. The input gate
𝑖𝑡 determines whether or not the current input worth preserving while the forget gate
𝑓𝑡 computes the proportion of the previous hidden state that must be forgotten. The
cell state 𝑐𝑡 is obtained through an operation that requires the multiplication of the new
memory state 𝑔𝑡 and input gate 𝑖𝑡 added with the previous cell state 𝑐𝑡−1 multiplied by
the forget gate 𝑓𝑡. The hidden state ℎ𝑡 uses the output gate 𝑜𝑡 to discover the part of the
cell state 𝑐𝑡 that will be exposed to the rest of the chain.

Traditional LSTM architecture (unidirectional, left-to-right or right-to-left) only
considers information from the previous time steps to produce each output. Bidirectional
LSTM (BiLSTM) architecture (152, 135) in contrast, considers both historical and future
steps in order to learn information from preceding as well as future input events. It con-
tains forward (left-to-right) and backward (right-to-left) LSTM layers whose outputs are
merged by concatenation in a new layer that, intuitively, encodes past and future informa-
tion. BiLSTM layers are typically stacked in 𝑘 bidirectional layers. This arrangement, as
occur in other types of multi-layer networks, enables capturing higher levels of abstraction
yielding superior performance in sequence labeling tasks such as part of speech tagging,
chunking, and named entity recognition (153, 154).

Our approach is depicted in Figure 12. Given a proposition expressed in natural
language and its respective predicate, we start by the feature extraction stage. Our fea-
tures, listed below, were inspired by (84, 139, 131) and are performed for each token in
the proposition.

∙ Word embeddings: we capture the word representations for each token in a
sentence, including the predicate. A look-up table operation is performed in an
embedding matrix initialized with all the word vectors computed as mentioned in
subsection 3.4.1.
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∙ Predicate embeddings: through a look-up table operation, the word vector for
the given predicate is extracted and repeated for each token in a proposition. This
time, however, to save memory, the embedding matrix contains only the predicates
used by PropBank-Br.

∙ Capitalization: as our word representations are all lowercased, capitalization is
not naturally encoded by our model. To overcome this issue we created a set of
binary features that indicate whether all characters in a given token are capitalized,
contain any capital letter, or are lowercased.

∙ Path to predicate: the path to the predicate is given by the relative position
of a token in a sentence with respect to the predicate position. Thereby, the token
whose position coincides the predicate position is valued as 0 while the tokens that
occur right before and after the predicate are represented with negative and positive
values, respectively. Practically, a sentence containing five tokens whose predicate
occur in the fourth position would have its tokens labeled as {−3, −2, −1, 0, 1}.

∙ Predicate context: this binary feature indicates whether a given token is inside
the predicate context. To compute it, we apply a fixed window of size five where
the predicate occupies its center. If a token is inside this window, then the token is
said to be a member of predicate context (the value one is assigned).

These features are concatenated and feed the deep BiLSTM network that will
compute abstract representations from propositions. The output of the last BiLSTM
layer is attached to a softmax layer that, for each input token contained in the original
proposition, yields the probability distribution over all the possible semantic roles (39
roles), creating a probability matrix. At last, in order to obtain the final prediction for
the whole proposition, this probability matrix is sent to the global recursive neural parsing
algorithm, explained in more details in the following subsection.

3.4.3 Global Recursive Neural Parsing

As mentioned before, BiLSTM networks can make decisions based on contextual
information from previous and future input events. However, its output does not explicitly
encode the functional dependencies and constraints that exist at the sentence level (global
level). For instance, PropBank formalism states that core roles can occur at most once
per proposition, but a network, due to its localized nature, may assign the same role for
multiple tokens in the same proposition. Under these circumstances, if our final predictions
are made by using only network predictions, we are exclusively relying on the model’s
ability to indirectly learn global dependencies. In this context, a minimal mistake may
invalidate the whole sentence tagging.
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Figure 12 – Our deep BiLSTM architecture

Existing literature addresses such problem by applying a global inference mech-
anism whose objective is to find the best overall labeling for a given sentence. Dynamic
programming algorithms such as Viterbi are candidates for solving this type of problem.
The argument is that the usage of a transition state matrix naturally excludes violating
sequences (132, 133). The inference stage is also modeled as an Integer Linear Program-
ming (ILP) problem where one attempts to maximize the sentence labeling probability
observing the formalism constraints that are translated to an off-the-shelf ILP solver (11).
At last, Some authors rely on a reranking strategy that uses a second classifier which ag-
gregates features from sentence and frame level features (12).

Our global inference stage is based on the recent work of Lee, Lewis e Zettle-
moyer(155) that proposed the global recursive neural parsing algorithm. It directly searches
the space of all possible labels derived from the network predictions with no dynamic pro-
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gramming techniques. The approach may be seen as a special case of A* algorithm and
was tested on CCG parsing. The results point to an accurate and efficient model, finding
optimal parse in 99.9% of sentences while exploring only 190 subtrees on average.

As in a standard A* search algorithm, the score function 𝑠 of a partial sequence of
nodes until the time step 𝑡 is given by the equation 𝑠(𝑡) = 𝑔(𝑡) + ℎ(𝑡) where 𝑔 function is
the cost of the path from starting node to node 𝑡 and ℎ function indicates an admissible
heuristic for best path. Regular opening cost function 𝑔 was modified by the introduction
a constraint function 𝑐 that yields a non-negative score whenever the candidate sequence
violates any global constraint and 0 otherwise (Eq. 3.4). Hence, the opening cost is given
by summing over the network probabilities output (represented as log 𝑝) subtracted from
the violation cost from the starting node until time step 𝑡.

𝑔(𝑤, 𝑦𝑡) =
𝑡∑︁

𝑖=1
log 𝑝(𝑦𝑖|𝑤) − 𝑐(𝑤, 𝑦𝑖) (3.4)

The role of constraint function 𝑐 is to discourage node exploring whose partial
path leads to an invalid sequence of tags. The following global rules have been encoded
into this function :

∙ PropBank constraint: As described in (15), core semantic roles (A0-A5) and
adjunct arguments (AM) must be utilized at most once in a given proposition.
Therefore, starting from second appearance, repeating semantic roles yields the
violation score of 10.

∙ IOB schema: The constraints implemented here penalizes any partial sequence
that does not produce a valid IOB sequence, such as the case where an inside tag
(I) is not preceded by the begin tag (B). Here, the violation score is also 10.

The heuristic function ℎ utilized in our work (see equation 3.5) is the same used
by (131) and is given by the summation over the most probable labels for all timesteps
after 𝑡.

ℎ(𝑤, 𝑦𝑡) =
𝑇∑︁

𝑖=𝑡+1
max
𝑦𝑖∈𝑇

log 𝑝(𝑦𝑖|𝑤) (3.5)

3.5 Experimental Setup
This section exposes the details and settings shared across the experiments re-

ported in this paper.

Our system was fully implemented using the Python language. The neural network
uses libraries such Keras (156) and TensorFlow (157) whereas global recursive neural
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parsing algorithm was implemented from scratch in pure Python. Our experiments were
performed on a machine equipped with an Intel Xeon E5-2686 v4 CPU, 64GB of RAM,
and an NVIDIA K80 GPU.

Our models were trained using Adam, an efficient adaptative algorithm for gradient-
based optimization of stochastic objective functions that is typically suited for high-
dimensional parameter models (158), as it is the case. The algorithm was initialized with
the default settings suggested by the original paper (𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =
10−8). To prevent overfitting and to improve the overall performance of our model, we
used the Dropout technique introduced by (159). After some experimentation, we chose
to drop 35% of the units at the input of each BiLSTM layer and another 20% between
recurrent connections of the layers (160).

Each training session lasted up to a hundred epochs with an early stopping policy
that ends the session after ten epochs without any improvement in the model’s overall
performance. We saved the network state whenever the current epoch result beats the one
obtained by the previous best model.

Performance evaluation was executed after the end of each training epoch. The
process was carried through the usage of the official evaluation script for the CoNLL-
2005 Shared Task (srl-eval.pl11), that was dedicated to the SRL task (161). As stated in
related work (subsection 3.2.2), our results were compared to those reported by Fonseca
e Rosa(18) referred to in this paper as our baseline.

3.6 Results
Our first experiment investigates the optimal word embedding dimensionality ap-

plicable to our model. We prepared three distinct models with an almost identical setup
where the only exception concerns the choice of word vector dimensionality. These model’s
used distinct pre-computed word vector representations with 50, 100, and 150 dimensions,
respectively. All of them used four stacked BiLSTM layers (following the setup of Zhou
e Xu(84)), each of them containing 300 hundred LSTM cells equally distributed between
internal forward and backward layers. The remaining hyperparameters strictly followed
the experimental setup described in the previous section.

In order to provide a robust evaluation, we chose to employ the cross-validation
technique in a 20-fold configuration (162), what maintains the same partition size used
by baseline. Hence, we randomly divided the original corpus into 20 equal sized folds and
performed 20 separate training sessions, each using 19 folds for training (95% of data)
and 1 fold for testing (the remaining 5%). We rotate the fold selection in a way that all
11 Available at <http://www.lsi.upc.edu/~srlconll/soft.html>

http://www.lsi.upc.edu/~srlconll/soft.html
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folds are used as the test set exactly once. Therefore, considering our experiment, in this
stage we conducted 60 training sessions that took three and half days to run.

From Figure 13 one may observe that the model’s performance is sensitive to
changes in word embedding dimensionality. Averaged results indicate a difference in per-
formance that surpassed 4 F1-score points. A Kruskal-Wallis H-test confirmed this obser-
vation as it rejects the null hypothesis that the population median of all the groups is
equals (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 4.71 * 10−7). A post-hoc comparison12 points that, considering our
model, the usage of word vectors with 50 dimensions systematically produces inferior re-
sults when compared to the other models, based on a 100 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2.13 * 10−6) and a
150 dimensions (𝑝−𝑣𝑎𝑙𝑢𝑒 = 2.27*10−6). On the other hand, when directly comparing the
performance of models based on word embeddings with 100 and 150 dimensions, we fail
to reject the null hypothesis (p-value = 0.11). Thereby, despite a slightly better averaged
F1-score obtained by the model with 150 dimensions, there is no significant difference
when compared to the result of the model based on 100 dimensions.

These results corroborate the findings of Melamud et al.(149) that suggest that
picking the optimal dimensionality is critical for obtaining the best performance on ex-
trinsic tasks such as SRL. In our case, the optimal level of semantic expressiveness was
reached using vectors with 150 dimensions.

In the next experiment, we analyze the effect caused by the depth of stacked
BiSLTM layers in the overall performance of our system. This time, we trained four iden-
tical models whose only exception regards its number of layers (1, 2, 3, and 4 layers). These
models used pre-computed word embedding models with 150 dimensions (the best perfor-
mance on the previous experiment) and BiLSTM layers with 300 LSTM cells each. Once
again, we used a 20-fold cross-validation technique, and the remaining hyper-parameters
followed the experimental setup described in the previous section. This experiment took
four days to run.

Table 15 presents the results. Notice that the model based on just one BiLSTM
layer yields an inferior performance when compared to the remaining models, based on
more layers (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.01). The accuracy reaches its peak in the model based on two
layers (65.63) and, as we stack more layers, deepening the network architecture, one may
observe a slight performance degradation. However, after comparing results from groups
based on 2, 3, and 4 stacked layers we observe that notwithstanding the model based
on two layers have achieved a slightly better averaged F1-score, there is no significant
difference on the accuracy of these groups (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.65).

These observations converged into our final model that uses word vector represen-
tations of 150 dimensions and a neural network architecture composed by two stacked
12 We used Wilcox Mann-Whitney test
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Figure 13 – Results considering different dimensionality

Table 15 – Model’s performance variation according to the number of stacked layers

Layers Averaged F1-Score
1 61.76
2 65.63
3 65.22
4 64.76

BiLSTM layers.

Table 16 provides a comparison of our final model with the baseline system based
on one-step and two-step frameworks (18). When we confront the one-step framework
from the baseline with our system, one may observe that their best result (the best
performance on a single training session) was consistently outperformed by our model’s
best result (62.31 vs 68.18), creating a margin of almost 6 F1-score points. Even if we
compare the baseline best model with our averaged score, the margin is still consistent,
yielding a difference of 3.32 F1-score points.

Our model also produced superior results when compared to the two-stage model
of the baseline, albeit with a smaller margin. This time, the difference between the best
models was 3.05 points, what points to a reduction on relative error of 8.74%. Again, our
averaged result surpassed their best single model by a margin of 0.5 points.
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Notice that the baseline paper (18) reported results only for their best single
training sessions. For this reason, we could not produce a direct comparison based on
k-fold cross-validation, that would produce a more robust evaluation.

Table 16 – SRL Performance comparison

Model Precision Recall F1-Score
Our best 67.62 68.75 68.18
Ours (averaged after 20-fold) 65.63
Baseline best (One-step) 64.41 60.34 62.31
Baseline best (Two-step) 67.06 63.31 65.13

Finally, the results of our best single model are detailed in Table 17. As expected,
the system was more performant in well-defined and numerous semantic roles such as
A0, A1, AM-TMP, and AM-NEG. On the other hand, roles such as A2 and A3 yielded
inferior results. This reduction may be due to the lack of standardization in the semantic
role definitions. As mentioned in the background (see section 3.2), only A0 and A1 exhibit
a shared the meaning across different predicates. The meaning of the remaining core roles
varies according to the predicate and its senses and can be even fused with adjunctive
roles. This ambiguity may act as a noise factor for the neural network consequently causing
a performance drop in the remaining roles.

Table 17 – Overall results for our best model

Precision Recall F𝛽=1
Overall 67.62% 68.75% 68.18
A0 81.82% 86.90% 84.28
A1 71.15% 72.29% 71.71
A2 52.73% 42.03% 46.77
A3 28.57% 40.00% 33.33
A4 100.00% 50.00% 66.67
AM-ADV 42.86% 50.00% 46.15
AM-CAU 50.00% 33.33% 40.00
AM-DIS 44.44% 28.57% 34.78
AM-EXT 0.00% 0.00% 0.00
AM-LOC 54.17% 72.22% 61.90
AM-MED 0.00% 0.00% 0.00
AM-MNR 34.78% 47.06% 40.00
AM-NEG 90.00% 94.74% 92.31
AM-PNC 42.86% 66.67% 52.17
AM-PRD 100.00% 33.33% 50.00
AM-TMP 66.67% 73.47% 69.90
V 100.00% 100.00% 100.00

Our final result is still far from the best results reported for the English language.
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However, we believe that our system, if exposed to a more balanced corpus, with a com-
parable number of sentences, would be able to achieve competitive performance.

3.7 Conclusion
In this paper, we described an end-to-end semantic role labeler for the Portuguese

language. The one-step system was built on top of a BiLSTM neural network architecture
tied to an inference stage based on a global recursive neural parsing algorithm that was
specifically tailored for the SRL task. Seeking an optimal structure, we also conducted
an extensive investigation about the effects of two crucial factors on our structure: The
depth of network architecture and the proper word embedding dimensionality.

Our model consistently outperformed the previous state-of-the-art by 3.05 F1-score
points, reducing the relative error in 8.74%. We also confirmed the hypothesis that picking
the optimal embedding dimensionality is critical for obtaining the best accuracy on SRL
task. Our final model was based on word vectors with 150 dimensions passing through a
deep network with two BiLSTM layers.

Future research may invest in the expansion of PropBank-Br corpus what, in our
point of view, is essential for reaching a competitive performance. Moreover, we believe
that a promising direction point to an architecture designed to attenuate the impact of
ambiguity in semantic role definitions of PropBank formalism.
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4 Conclusion

The objective of this thesis was to evaluate the performance of a semantic role
labeler for the Portuguese language built considering techniques addressed in the litera-
ture. We evaluated an end-to-end semantic role labeler based on a deep bidirectional long
short-term neural network whose predictions serve as input to a recursive neural parsing
algorithm, specifically tailored for the task. The first specific objective of this research
was to "Identify the most accurate semantic role labeling techniques described in the lit-
erature." and have been achieved on the systematic literature review (chapter 2). The
second specific objective was to "Analyze the results of an automatic semantic role labeler
for the Portuguese language built considering techniques addressed in the literature." and
has been achieved with the method presented in chapter 3.

The results demonstrated that our semantic role labeler consistently outperformed
the previous state-of-the-art on PropBank-Br corpus by 3.05 F1-score points, reducing the
relative error in 8.74%. The performance though is only modest, still far from the one
reached by techniques targeted at the English language. We believe that our system would
be able to yield a superior performance if exposed to larger and more balanced data.

The source code of the proposed model, as well as the trained word representations,
were made publicly available on the internet, under BSD license, and may be used by
future investigations focused on content-analysis for the Portuguese language.

Future research may also invest in the expansion of PropBank-Br corpus what, in
our point of view, is an essential element for reaching a competitive performance.
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APPENDIX A – Systematic literature re-
view - support

Figure 14 – The histogram of F1-score distribution

Table 18 – Syntactic combination strategies : Comparable experiments

Dependency Constituency Shallow Word Embeddings
Dependency 1 1
Constituency 1 6

Shallow 6 1
Word Embeddings 1 1

Source: Own Author
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Figure 15 – F1-score distribution from comparable experiments

The Q-Q plot exhibits negatively skewed distribution ≈ −3.42. The
Shapiro-Wilk normality test corroborate this result while it rejects
the null hypothesis that the sample came from a normally distributed
population (W = 0.71446, p-value = 1.063 × 10−10)

Source: Own Author
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